scholarly journals Utilizing of (Zinc Oxide Nano-Spray) for Disinfection against “SARS-CoV-2” and Testing Its Biological Effectiveness on Some Biochemical Parameters during (COVID-19 Pandemic)—”ZnO Nanoparticles Have Antiviral Activity against (SARS-CoV-2)”

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 388 ◽  
Author(s):  
Samy M. El-Megharbel ◽  
Mohammed Alsawat ◽  
Fawziah A. Al-Salmi ◽  
Reham Z. Hamza

A newly synthesized zinc (II) oxide nanoparticle (ZnO-NPs) has been used as a disinfectant Nano-spray for the emerging corona virus (SARS-CoV-2). The synthesized obtained nanomaterial of (ZnO) was fully chemically characterized by using different spectroscopic analysis (FT-IR, UV and XRD) and surface analysis techniques. ZnO-Nps surface morphology and chemical purity has been investigated by transmission electron microscope (TEM), high resolution transmission electron microscope (HR-TEM), scanning electron microscopy (SEM) as well as energy dispersive X-ray analysis (EDX), Additionally Zeta potential and Zeta size distribution were measured and evaluated to confirm its nano-range scale. The synthesized Zno-NPs have been tested using 10% DMSO and ddH2O for estimation of antiviral activity against (SARS-CoV-2) by using cytotoxicity assay (CC50) and inhibitory concentration (IC50). The results revealed that (Zno-NPs) has high anti-SARS-CoV-2 activity at cytotoxic concentrations in vitro with non-significant selectivity index (CC50/IC50 ≤ 1). The current study results demonstrated the (ZnO-NPs) has potent antiviral activity at low concentration (IC50 = 526 ng/mL) but with some cytotoxic effect to the cell host by (CC50 = 292.2 ng/mL). We recommend using of (ZnO-NPs) as potent disinfectant against (SARS-Cov-2), but there are slight side effects on the cellular host, so we recommend more prospective studies on complexation of other compounds with (ZnO-NPs) in different concentrations to reduce its cellular toxicity and elevate its antiviral activity against SARS-CoV-2 activities.

Author(s):  
Gao Fengming

Transmission electron microscope(TEM) and scanning electron microscope(SEM) were widely used in experimental tumor studies. They are useful for evaluation of cellular transformation in vitro, classification of histological types of tumors and treating effect of tumors. We have obtained some results as follows:1. Studies on the malignant transformation of mammalian cells in vitro. Syrian golden hamster embryo cells(SGHEC) were transformed in vitro by ThO2 and/or ore dust. In a few days after dust added into medium, some dust crystals were phagocytized. Two weeks later, malignant transformation took place. These cells were of different size, nuclear pleomorphism, numerous ribosomes, increasing of microvilli on cell surface with various length and thickness, and blebs and ruffles(Figs. 1,2). Myelomonocytic leukemic transformation of mouse embryo cells(MEC) was induced in vitro by 3H-TdR. Transformed cells were become round from fusiform. The number of mitochondria and endoplasmic reticulum was reduced, ribosomes and nucleoli increased, shape of nuclei irregular, microvilli increased, and blebs and ruffles appeared(Fig. 3).


2000 ◽  
Vol 68 (7) ◽  
pp. 3878-3887 ◽  
Author(s):  
Amit Chakrabortty ◽  
Soumita Das ◽  
Sabita Majumdar ◽  
Kanchan Mukhopadhyay ◽  
Susanta Roychoudhury ◽  
...  

ABSTRACT Evidence suggests that a repertoire of Vibrio cholerae genes are differentially expressed in vivo, and regulation of virulence factors in vivo may follow a different pathway. Our work was aimed at characterization of in vivo-grown bacteria and identification of genes that are differentially expressed following infection by RNA arbitrarily primed (RAP)-PCR fingerprinting. The ligated rabbit ileal loop model was used. The motility of in vivo-grown bacteria increased by 350% over that of in vitro-grown bacteria. Also, the in vivo-grown cells were more resistant to killing by human serum. By using the RAP-PCR strategy, five differentially expressed transcripts were identified. Two in vitro-induced transcripts encoded polypeptides for the leucine tRNA synthatase and the 50S ribosomal protein, and the three in vivo-induced transcripts encoded the SucA and MurE proteins and a polypeptide of unknown function. MurE is a protein involved in the peptidoglycan biosynthetic pathway. The lytic profiles of in vivo- and in vitro-grown cells suspended in distilled water were compared; the former was found to be slightly less sensitive to lysis. Ultrathin sections of both cells observed under the transmission electron microscope revealed that in contrast to the usual wavy discontinuous membrane structure of the in vitro-grown cells, in vivo-grown cells had a more rigid, clearly visible double-layered structure. The V. cholerae murE gene was cloned and sequenced. The sequence contained an open reading frame of 1,488 nucleotides with its own ribosome-binding site. A plasmid containing the murE gene of V. cholerae was transformed into V. cholerae 569B, and a transformed strain, 569BME, containing the plasmid was obtained. Ultrathin sections of 569BME viewed under a transmission electron microscope revealed a slightly more rigid cell wall than that of wild-type 569B. When V. cholerae 569B and 569BME cells were injected separately into ligated rabbit ileal loops, the transformed cells had a preference for growth in the ileal loops versus laboratory conditions.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1808
Author(s):  
Hassan O. Shaikhaldein ◽  
Fahad Al-Qurainy ◽  
Salim Khan ◽  
Mohammad Nadeem ◽  
Mohamed Tarroum ◽  
...  

Zincoxide nanoparticles (ZnO NPs) are among the most produced and used nanomaterials worldwide, and in recent times these nanoparticles have also been incorporate in plant science and agricultural research. The present study was planned to synthesize ZnO NPs biologically using Ochradenus arabicus leaves and examine their effect on the morphology and physiology properties of Maerua oblongifolia cultured in vitro. ZnO NPs were characterized by UV–visible spectroscopy (UV–vis), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy, which demonstrated hexagonal shape nanoparticles of size ranging from 10 to 50 nm. Thus, the study uncovered an efficient, eco-friendly and simple technique for biosynthesis of multifunctional ZnO NPs using Ochradenus arabicus following growth of Maerua oblongifolia shoots in different concentrations of ZnO NPs (0, 1.25, 2.5, 5, 10, or 20 mg L−1) in Murashige and Skoog medium. Remarkable increases in plant biomass, photosynthetic pigments, and total protein were recorded up to a concentration of 5 mg L−1; at the same time, the results demonstrated a significant reduction in lipid peroxidation levels with respect to control. Interestingly, the levels of proline and the antioxidant enzyme catalase (CAT), superoxide dismutase (SOD), and glutathione reductase (GR) activities were increased significantly in response to all ZnO NP treatments. These findings indicate that bioengineered ZnO NPs play a major role in accumulation of biomass and stimulating the activities of antioxidant enzymes in plant tissues. Thus, green-synthesized ZnO NPs might be of agricultural and medicinal benefit owing to their impacts on plants in vitro.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 680
Author(s):  
Reham Z. Hamza ◽  
Adil A. Gobouri ◽  
Hatim M. Al-Yasi ◽  
Tarek A. Al-Talhi ◽  
Samy M. El-Megharbel

Synthesized titanium oxide nanoparticles (TiO2-NPs) nanotubes were used for the disinfection of new emerging corona virus-19 (SARS-CoV-2) in this study. The newly synthesized TiO2-NPs (nanotubes) were characterized by chemical spectroscopic analysis Fourier-transform infrared spectroscopy and ultraviolet FT-IR and UV. The chemical purity and Zeta potential distribution of the TiO2-NPs (nanotubes) were evaluated to confirm their nano-range, and their surface morphology was determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), and energy dispersive X-ray analysis (EDX). The antiviral activity of the TiO2-NPs (nanotubes) against SARS-CoV-2 was evaluated using 10% (Dimethyl sulfoxide) DMSO and dist.H2O using a cytotoxicity assay and inhibitory concentration assay (to determine the cytotoxic half concentration CC50 and half maximal inhibitory concentration IC50). The current results confirmed that TiO2-NPs exhibit strong anti-SARS-CoV-2 activity at very low cytotoxic concentrations in vitro with a non-significant selectivity index (CC50/IC50 ≤ 1). The obtained results indicate that TiO2-NPs and nanotubes have potent antiviral activity at a very low concentrations (IC50 = 568.6 ng/mL), with a weak cytotoxic effect on the cellular host (CC50 = 399.1 ng/mL). Thus, we highly recommend the use of TiO2-NPs (nanotubes) in vitro and in wall coatings as a potent disinfectant to combat SARS-CoV-2 with little irritation of the cellular hosts. Furthermore, we also recommend more and excessive prospective studies on the complexation of natural active or natural compounds with TiO2-NPs (nanotubes) to minimize their cytotoxicity, enhance their antiviral activity, and increase their inhibition of SARS-CoV-2.


Author(s):  
R. A. Waugh ◽  
J. R. Sommer

Cardiac sarcoplasmic reticulum (SR) is a complex system of intracellular tubules that, due to their small size and juxtaposition to such electron-dense structures as mitochondria and myofibrils, are often inconspicuous in conventionally prepared electron microscopic material. This study reports a method with which the SR is selectively “stained” which facilitates visualizationwith the transmission electron microscope.


Author(s):  
Sanford H. Vernick ◽  
Anastasios Tousimis ◽  
Victor Sprague

Recent electron microscope studies have greatly expanded our knowledge of the structure of the Microsporida, particularly of the developing and mature spore. Since these studies involved mainly sectioned material, they have revealed much internal detail of the spores but relatively little surface detail. This report concerns observations on the spore surface by means of the transmission electron microscope.


Author(s):  
H. Tochigi ◽  
H. Uchida ◽  
S. Shirai ◽  
K. Akashi ◽  
D. J. Evins ◽  
...  

A New High Excitation Objective Lens (Second-Zone Objective Lens) was discussed at Twenty-Sixth Annual EMSA Meeting. A new commercially available Transmission Electron Microscope incorporating this new lens has been completed.Major advantages of the new instrument allow an extremely small beam to be produced on the specimen plane which minimizes specimen beam damages, reduces contamination and drift.


Author(s):  
G. Cliff ◽  
M.J. Nasir ◽  
G.W. Lorimer ◽  
N. Ridley

In a specimen which is transmission thin to 100 kV electrons - a sample in which X-ray absorption is so insignificant that it can be neglected and where fluorescence effects can generally be ignored (1,2) - a ratio of characteristic X-ray intensities, I1/I2 can be converted into a weight fraction ratio, C1/C2, using the equationwhere k12 is, at a given voltage, a constant independent of composition or thickness, k12 values can be determined experimentally from thin standards (3) or calculated (4,6). Both experimental and calculated k12 values have been obtained for K(11<Z>19),kα(Z>19) and some Lα radiation (3,6) at 100 kV. The object of the present series of experiments was to experimentally determine k12 values at voltages between 200 and 1000 kV and to compare these with calculated values.The experiments were carried out on an AEI-EM7 HVEM fitted with an energy dispersive X-ray detector.


Sign in / Sign up

Export Citation Format

Share Document