scholarly journals Electron-Beam Synthesis of Dielectric Coatings Using Forevacuum Plasma Electron Sources (Review)

Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Yury G. Yushkov ◽  
Efim M. Oks ◽  
Andrey V. Tyunkov ◽  
Denis B. Zolotukhin

This is a review of current developments in the field of ion-plasma and beam methods of synthesis of protective and functional dielectric coatings. We give rationales for attractiveness and prospects of creating such coatings by electron-beam heating and following evaporation of dielectric targets. Forevacuum plasma electron sources, operating at elevated pressure values from units to hundreds of pascals, make it possible to exert the direct action of an electron beam on low-conductive materials. Electron-beam evaporation of aluminum oxide, boron, and silicon carbide targets is used to exemplify the particular features of electron-beam synthesis of such coatings and their parameters and characteristics.

2021 ◽  
Vol 2 ◽  
pp. 59-65
Author(s):  
I. Yu. Bakeev ◽  
◽  
Yu. A. Burachevsky ◽  
E. S. Dvilis ◽  
D. B. Zolotukhin ◽  
...  

The work is devoted to the study of electrical properties (temperature dependences of conductivity, relative dielectric constant, dielectric loss tangent for various frequencies) of an aluminum oxide ceramic film deposited on a metal substrate. The film was created by the original method of electron beam evaporation of a non-conductive target, consisting of a compressed alumina powder, using a plasma electron source, which is able to reliably operate in the fore-vacuum pressure range (5 – 100 Pa). Such increased working gas pressures ensures the generation of a dense beam plasma near the target, which neutralizes the charging of a non-conducting target and thereby provides its effective melting and electron beam evaporation.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012072
Author(s):  
E M Oks’ ◽  
A V Tyunkov ◽  
Y G Yushkov ◽  
D B Zolotukhin

Abstract This paper presents the experimental study of dielectric coatings based on aluminum oxide (Al2O3) and aluminum nitride (AlN) ceramics as applied to their use in microelectronics. It is shown that the coatings obtained by electron-beam evaporation of ceramic in forevacuum pressures (1-100 Pa) endow devices with required dielectric parameters and improves heat sink from the surface of monolithic integral circuits.


Shinku ◽  
1967 ◽  
Vol 10 (5) ◽  
pp. 183-189
Author(s):  
Seiichiro KASHU ◽  
Shuji NISHINO ◽  
Chikara HAYASHI

2021 ◽  
Vol 2064 (1) ◽  
pp. 012049
Author(s):  
A S Klimov ◽  
I Y Bakeev ◽  
A A Zenin

Abstract The article presents the results of electron beam sintering of composite ceramics based on Al2O3 and ZrO2 powders. Samples were made with different contents of Al2O3 and ZrO2 components and different pressing pressures. Sintering was carried out in vacuum at a helium pressure of 30 Pa. An electron beam generated by a forevacuum plasma electron source was used for sintering. It is shown that the sintering result depends on the pressing pressure and the percentage of components. The influence of the geometry of the samples and their composition on the temperature drop over their volume during sintering has been determined.


1985 ◽  
Vol 131 (3-4) ◽  
pp. 261-266 ◽  
Author(s):  
M. Denhoff ◽  
B. Heinrich ◽  
A.E. Curzon ◽  
S. Gygax

2007 ◽  
Vol 201 (13) ◽  
pp. 6078-6083 ◽  
Author(s):  
C. Rebholz ◽  
M.A. Monclus ◽  
M.A. Baker ◽  
P.H. Mayrhofer ◽  
P.N. Gibson ◽  
...  

2021 ◽  
Vol 7 (5) ◽  
pp. 395
Author(s):  
Mohammad Yousefi ◽  
Masoud Aman Mohammadi ◽  
Maryam Zabihzadeh Khajavi ◽  
Ali Ehsani ◽  
Vladimír Scholtz

Mycotoxins cause adverse effects on human health. Therefore, it is of the utmost importance to confront them, particularly in agriculture and food systems. Non-thermal plasma, electron beam radiation, and pulsed light are possible novel non-thermal technologies offering promising results in degrading mycotoxins with potential for practical applications. In this paper, the available publications are reviewed—some of them report efficiency of more than 90%, sometimes almost 100%. The mechanisms of action, advantages, efficacy, limitations, and undesirable effects are reviewed and discussed. The first foretastes of plasma and electron beam application in the industry are in the developing stages, while pulsed light has not been employed in large-scale application yet.


Sign in / Sign up

Export Citation Format

Share Document