scholarly journals Deposition and Patterning of Polycrystalline Diamond Films Using Traditional Photolithography and Reactive Ion Etching

Coatings ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. 148 ◽  
Author(s):  
Stepan Linnik ◽  
Vitalii Okhotnikov ◽  
Alexander Gaydaychuk
2012 ◽  
Vol 1395 ◽  
Author(s):  
T. Misu ◽  
K. Koh ◽  
T. Arai

ABSTRACTCVD polycrystalline diamond surfaces were etched using reactive ion etching system with either a conventional stainless steel electrode or MgO sintered ceramic containing electrode. The micro-needle array of high aspect on diamond substrate surfaces obtained with MgO electrode was fabricated by using back-sputtering from MgO electrode. The RMS roughness of diamond substrate surfaces obtained with MgO electrode is higher than those obtained with stainless steel electrode.


2000 ◽  
Author(s):  
Guifu Ding ◽  
Xiaolin Zhao ◽  
Aibin Yu ◽  
Chunsheng Yang ◽  
Bingchu Cai ◽  
...  

Author(s):  
D.P. Malta ◽  
S.A. Willard ◽  
R.A. Rudder ◽  
G.C. Hudson ◽  
J.B. Posthill ◽  
...  

Semiconducting diamond films have the potential for use as a material in which to build active electronic devices capable of operating at high temperatures or in high radiation environments. A major goal of current device-related diamond research is to achieve a high quality epitaxial film on an inexpensive, readily available, non-native substrate. One step in the process of achieving this goal is understanding the nucleation and growth processes of diamond films on diamond substrates. Electron microscopy has already proven invaluable for assessing polycrystalline diamond films grown on nonnative surfaces.The quality of the grown diamond film depends on several factors, one of which is the quality of the diamond substrate. Substrates commercially available today have often been found to have scratched surfaces resulting from the polishing process (Fig. 1a). Electron beam-induced current (EBIC) imaging shows that electrically active sub-surface defects can be present to a large degree (Fig. 1c). Growth of homoepitaxial diamond films by rf plasma-enhanced chemical vapor deposition (PECVD) has been found to planarize the scratched substrate surface (Fig. 1b).


1996 ◽  
Author(s):  
George F. McLane ◽  
Paul Cooke ◽  
Robert P. Moerkirk

2020 ◽  
Vol 54 (6) ◽  
pp. 672-676
Author(s):  
L. K. Markov ◽  
I. P. Smirnova ◽  
M. V. Kukushkin ◽  
A. S. Pavluchenko

1988 ◽  
Vol 24 (13) ◽  
pp. 798 ◽  
Author(s):  
T. Matsui ◽  
H. Sugimoto ◽  
T. Ohishi ◽  
H. Ogata

Sign in / Sign up

Export Citation Format

Share Document