scholarly journals Surface Texture Evolution of Fused Silica in a Combined Process of Atmospheric Pressure Plasma Processing and Bonnet Polishing

Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 676
Author(s):  
Xing Su ◽  
Chenglong Ji ◽  
Yang Xu ◽  
Duo Li ◽  
David Walker ◽  
...  

The increasing demand for precision optical components invokes the requirement of advanced fabrication techniques with high efficiency. Atmospheric pressure plasma processing (APPP), based on chemical etching, has a high material removal rate and a Gaussian-shaped influence function, which is suitable to generate complex structures and correct form errors. Because of the pure chemical etching, an optically smooth surface cannot be achieved using only APPP. Thus, bonnet polishing (BP) with a flexible membrane tool, also delivering a Gaussian influence-function, is introduced to smooth the surface after APPP. In this paper, the surface texture evolution in the combined process of APPP and BP is studied. The etched texture with increased removal depth of APPP is presented and analyzed. Subsequently, the processed substrates are smoothed by BP. The texture smoothing and the roughness improvement is investigated in detail. The experimental results show that the APPP etched pits coalesce with each other and transform into irregular convex-concave structures, with roughness degraded to about 25 nm arithmetical mean deviation (Ra). The APPP etched texture can be successfully smoothed to 1.5 nm Ra, with 0.2–1 μm material removal of BP.

2013 ◽  
Vol 706-708 ◽  
pp. 270-273
Author(s):  
Dong Fang Wang

In order to get ultra-smooth surface without subsurface damage efficiently for fused silica, the atmospheric pressure plasma processing (APPP) is developed. It is based on chemical reaction between active radicals excited by plasma and workpiece surface atoms, so the subsurface damage caused by contact stress can be avoided and atomic-level precision machining can be achieved. In this paper, the influence on material removal function by the key factors of APPP including the flow rate of reaction gases, input power, and processing distance are discussed. In addition, by the regression model a quantitative mathematical model of the material removal function of the atmospheric pressure plasma processing on fused silica is established. And this model is verified by experimental data.


2013 ◽  
Author(s):  
Gui-cai Song ◽  
Yan-xiang Na ◽  
Xiao-long Dong ◽  
Xiao-liang Sun

2005 ◽  
Vol 2 (3) ◽  
pp. 189-196 ◽  
Author(s):  
Yasushi Sawada ◽  
Keiichi Yamazaki ◽  
Noriyuki Taguchi ◽  
Tetsuji Shibata

The effectiveness of atmospheric pressure (AP) plasma preprocessing before Ni/Au or Cu plating has been examined by applying it to a build-up printed circuit board (FR-4 grade) and polyimide-based flexible circuit film, both with blind via-holes (BVHs). The AP plasma applied with a dielectric barrier discharge is generated inside a 56 mm wide quartz vessel by an RF power generator using Ar-O2 gas mixture. One side of the vessel is open and the plasma jet is blown on the sample substrate transported 5 mm downward from the outlet of the vessel. The deposit failure rate of Ni/Au electroless deposit to 50 μm-diameter BVHs formed on a photo resist on the printed circuit board is 12.5% without preprocessing but is decreased to 0% after applying the AP plasma processing. As for 50 μm-diameter BVHs formed with a YAG laser on a polyimide-based flexible circuit film, the bump formation using electrolytic copper plating fails without preprocessing, but a 100% bump formation rate is achieved after applying AP plasma processing. It is presumed that the AP plasma processing improves the wetting property of the BVH walls and allows the plating solution to uniformly cover the entire wall surfaces without generating bubbles. The removal of organic substances attached to the BVH bottom surface also helps to improve the adherence of metal plating.


Sign in / Sign up

Export Citation Format

Share Document