scholarly journals Security Analysis of Lightweight IoT Cipher: Chaskey

Cryptography ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 22 ◽  
Author(s):  
Ashutosh Dhar Dwivedi

This paper presents the differential cryptanalysis of ARX based cipher Chaskey using tree search based heuristic approach. ARX algorithms are suitable for resource-constrained devices such as IoT and very resistant to standard cryptanalysis such as linear or differential. To make a differential attack, it is important to make differential characteristics of the cipher. Finding differential characteristics in ARX is the most challenging task nowadays. Due to the bigger block size, it is infeasible to calculate lookup tables for non-linear components. Transition through the non-linear layer of cipher faces a huge state space problem. The problem of huge state space is a serious research topic in artificial intelligence (AI). The proposed heuristic tool use such methods inspired by Nested Tree-based sampling to find differential paths in ARX cipher and successfully applied to get a state of art results for differential cryptanalysis with a very fast and simpler framework. The algorithm can also be applied in different research areas in cryptanalysis where such huge state space is a problem.

Author(s):  
Guozhen Liu ◽  
Mohona Ghosh ◽  
Ling Song

In CRYPTO’16, a new family of tweakable lightweight block ciphers - SKINNY was introduced. Denoting the variants of SKINNY as SKINNY-n-t, where n represents the block size and t represents the tweakey length, the design specifies t ∈ {n, 2n, 3n}. In this work, we evaluate the security of SKINNY against differential cryptanalysis in the related-tweakey model. First, we investigate truncated related-tweakey differential trails of SKINNY and search for the longest impossible and rectangle distinguishers where there is only one active cell in the input and the output. Based on the distinguishers obtained, 19, 23 and 27 rounds of SKINNY-n-n, SKINNY-n-2n and SKINNY-n-3n can be attacked respectively. Next, actual differential trails for SKINNY under related-tweakey model are explored and optimal differential trails of SKINNY-64 within certain number of rounds are searched with an indirect searching method based on Mixed-Integer Linear Programming. The results show a trend that as the number of rounds increases, the probability of optimal differential trails is much lower than the probability derived from the lower bounds of active Sboxes in SKINNY.


Author(s):  
Ling Song ◽  
Yi Tu ◽  
Danping Shi ◽  
Lei Hu

AbstractSubterranean 2.0 is a cipher suite that can be used for hashing, authenticated encryption, MAC computation, etc. It was designed by Daemen, Massolino, Mehrdad, and Rotella, and has been selected as a candidate in the second round of NIST’s lightweight cryptography standardization process. Subterranean 2.0 is a duplex-based construction and utilizes a single-round permutation in the duplex. It is the simplicity of the round function that makes it an attractive target of cryptanalysis. In this paper, we examine the single-round permutation in various phases of Subterranean 2.0 and specify three related attack scenarios that deserve further investigation: keystream biases in the keyed squeezing phase, state collisions in the keyed absorbing phase, and one-round differential analysis in the nonce-misuse setting. To facilitate cryptanalysis in the first two scenarios, we novelly propose a set of size-reduced toy versions of Subterranean 2.0: Subterranean-m. Then we make an observation for the first time on the resemblance between the non-linear layer in the round function of Subterranean 2.0 and SIMON’s round function. Inspired by the existing work on SIMON, we propose explicit formulas for computing the exact correlation of linear trails of Subterranean 2.0 and other ciphers utilizing similar non-linear operations. We then construct our models for searching trails to be used in the keystream bias evaluation and state collision attacks. Our results show that most instances of Subterranean-m are secure in the first two attack scenarios but there exist instances that are not. Further, we find a flaw in the designers’ reasoning of Subterranean 2.0’s linear bias but support the designers’ claim that there is no linear bias measurable from at most $$2^{96}$$ 2 96 data blocks. Due to the time-consuming search, the security of Subterranean 2.0 against the state collision attack in keyed modes still remains an open question. Finally, we observe that one-round differentials allow to recover state bits in the nonce-misuse setting. By proposing nested one-round differentials, we obtain a sufficient number of state bits, leading to a practical state recovery with only 20 repetitions of the nonce and 88 blocks of data. It is noted that our work does not threaten the security of Subterranean 2.0.


2020 ◽  
Vol 13 (3) ◽  
pp. 435-445 ◽  
Author(s):  
Malik Qasaimeh ◽  
Raad S. Al-Qassas ◽  
Fida Mohammad ◽  
Shadi Aljawarneh

Background: Lightweight cryptographic algorithms have been the focus of many researchers in the past few years. This has been inspired by the potential developments of lightweight constrained devices and their applications. These algorithms are intended to overcome the limitations of traditional cryptographic algorithms in terms of exaction time, complex computation and energy requirements. Methods: This paper proposes LAES, a lightweight and simplified cryptographic algorithm for constricted environments. It operates on GF(24), with a block size of 64 bits and a key size of 80-bit. While this simplified AES algorithm is impressive in terms of processing time and randomness levels. The fundamental architecture of LAES is expounded using mathematical proofs to compare and contrast it with a variant lightweight algorithm, PRESENT, in terms of efficiency and randomness level. Results: Three metrics were used for evaluating LAES according to the NIST cryptographic applications statistical test suite. The testing indicated competitive processing time and randomness level of LAES compared to PRESENT. Conclusion: The study demonstrates that LAES achieves comparable results to PRESENT in terms of randomness levels and generally outperform PRESENT in terms of processing time.


2020 ◽  
Vol 5 (4) ◽  
pp. 391-418
Author(s):  
Mukti Padhya ◽  
Devesh C. Jinwala

Abstract The existing Key Aggregate Searchable Encryption (KASE) schemes allow searches on the encrypted dataset using a single query trapdoor, with a feature to delegate the search rights of multiple files using a constant size key. However, the operations required to generate the ciphertext and decrypt it in these schemes incur higher computational costs, due to the computationally expensive pairing operations in encryption/decryption. This makes the use of such schemes in resource-constrained devices, such as Radio Frequency Identification Devices, Wireless Sensor Network nodes, Internet of Things nodes, infeasible. Motivated with the goal to reduce the computational cost, in this paper, we propose a Revocable Online/Offline KASE (R-OO-KASE) scheme, based on the idea of splitting the encryption/decryption operations into two distinct phases: online and offline. The offline phase computes the majority of costly operations when the device is on an electrical power source. The online phase generates final output with the minimal computational cost when the message (or ciphertext) and keywords become known. In addition, the proposed scheme R-OO-KASE also offers multi-keyword search capability and allows the data owners to revoke the delegated rights at any point in time, the two features are not supported in the existing schemes. The security analysis and empirical evaluations show that the proposed scheme is efficient to use in resource-constrained devices and provably secure as compared to the existing KASE schemes.


2016 ◽  
Vol 65 (3) ◽  
pp. 527-539 ◽  
Author(s):  
Joanna Kolańska-Płuska ◽  
Barbara Grochowicz

Abstract This work presents a study on dynamics of a circuit with a non-linear coil, where loss in iron is also taken into account. A coil model is derived using a state space description. The work also includes the development of an application in C# for coil dynamics examination, where the implicit RADAU IIA method of various orders is applied for the purpose of solving non-linear differential equations modelling the non-linear coil with loss in iron.


Author(s):  
Luigi Galotto ◽  
Carlos A. Canesin ◽  
Raimundo Cordero ◽  
Cristiano A. Quevedo ◽  
Rubenz Gazineu

Author(s):  
Kundankumar Rameshwar Saraf ◽  
Malathi P. Jesudason

This chapter explores the encryption techniques used for the internet of things (IoT). The security algorithm used for IoT should follow many constraints of an embedded system. Hence, lightweight cryptography is an optimum security solution for IoT devices. This chapter mainly describes the need for security in IoT, the concept of lightweight cryptography, and various cryptographic algorithms along with their shortcomings given IoT. This chapter also describes the principle of operation of all the above algorithms along with their security analysis. Moreover, based on the algorithm size (i.e., the required number of gate equivalent, block size, key size, throughput, and execution speed of the algorithm), the chapter reports the comparative analysis of their performance. The chapter discusses the merits and demerits of these algorithms along with their use in the IoT system.


Sign in / Sign up

Export Citation Format

Share Document