scholarly journals Gypsum Crystallization during Reverse Osmosis Desalination of Water with High Sulfate Content in Presence of a Novel Fluorescent-Tagged Polyacrylate

Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 309 ◽  
Author(s):  
Maxim Oshchepkov ◽  
Vladimir Golovesov ◽  
Anastasia Ryabova ◽  
Anatoly Redchuk ◽  
Sergey Tkachenko ◽  
...  

Gypsum scaling in reverse osmosis (RO) desalination process is studied in presence of a novel fluorescent 1,8-naphthalimide-tagged polyacrylate (PAA-F1) by fluorescent microscopy, scanning electron microscopy (SEM), dynamic light scattering (DLS) and a particle counter technique. A comparison of PAA-F1 with a previously reported fluorescent bisphosphonate HEDP-F revealed a better PAA-F1 efficacy, and a similar behavior of polyacrylate and bisphosphonate inhibitors under the same RO experimental conditions. Despite expectations, PAA-F1 does not interact with gypsum. For both reagents, it is found that scaling takes place in the bulk retentate phase via heterogeneous nucleation step. The background “nanodust” plays a key role as a gypsum nucleation center. Contrary to popular belief, an antiscalant interacts with “nanodust” particles, isolating them from calcium and sulfate ions sorption. Therefore, the number of gypsum nucleation centers is reduced, and in turn, the overall scaling rate is diminished. It is also shown that, the scale formation scenario changes from the bulk medium, in the beginning, to the sediment crystals growth on the membrane surface, at the end of the desalination process. It is demonstrated that the fluorescent-tagged antiscalants may become very powerful tools in membrane scaling inhibition studies.

2020 ◽  
Vol 9 (6) ◽  
pp. 13459-13473
Author(s):  
Mohammad Y. Ashfaq ◽  
Mohammad A. Al-Ghouti ◽  
Dana A. Da’na ◽  
Hazim Qiblawey ◽  
Nabil Zouari

1989 ◽  
Vol 54 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Milan Stakić ◽  
Slobodan Milonjić ◽  
Vladeta Pavasović ◽  
Zoja Ilić

Ultrafiltration of three laboratory made silica and two commercial silica sols was studied using Amicon YC membrane in a 200 ml capacity batch-cell. The effect of silica particle size, stirring conditions, pressure, pH and silica contents on ultrafiltration was investigated. The results obtained indicate that the smaller particles have, disregarding the stirring conditions, lower filtration flux. The differences observed in filtration flux are more pronounced in the conditions without stirring. The obtained value of the membrane resistance is independent of the conditions investigated (stirring, pressure, pH, silica contents and particle size). The values of the resistance of polarized solids, specific resistance, and the mass of gel per membrane surface unit were calculated for all experimental conditions.


2016 ◽  
Vol 499 ◽  
pp. 257-268 ◽  
Author(s):  
Zhaohuan Mai ◽  
Vincent Butin ◽  
Mohammed Rakib ◽  
Haochen Zhu ◽  
Murielle Rabiller-Baudry ◽  
...  

Author(s):  
Seungjae Oh ◽  
Semyung Wang ◽  
Minkyu Park ◽  
Joonha Kim

The objective of this study is to design spacers using fluid topology optimization in 2D crossflow Reverse Osmosis (RO) membrane channel to improve the performance of RO processes. This study is an initial attempt to apply topology optimization to designing spacers in RO membrane channel. The performance was evaluated by the quantity of permeate flux penetrating both upper and lower membrane surfaces. A coupled Navier-Stokes and Convection-Diffusion model was employed to calculate the permeate flux. To get reliable solutions, stabilization methods were employed with standard finite element method. The nine reference models which consist of the combination of circle, rectangular, triangle shape and zigzag, cavity, submerge configuration of spacers were simulated. Such models were compared with new model designed by topology optimization. The permeate flux at both membrane surfaces was determined as an objective function. In addition, permissible pressure drop along the channel and spacer volume were used as constraints. As a result of topology optimization as the permissible pressure drop changes in channel, characteristics of spacer design development was founded. Spacer design based on topology optimization was reconstructed to a simple one considering manufactuability and characteristics of development spacer design. When a simplified design was compared with previous 9 models, new design has a better performance in terms of permeate flux and wall concentration at membrane surface.


2015 ◽  
Vol 15 (5) ◽  
pp. 999-1010 ◽  
Author(s):  
Ahmed E. Abdelhamid ◽  
Mahmoud M. Elawady ◽  
Mahmoud Ahmed Abd El-Ghaffar ◽  
Abdelgawad M. Rabie ◽  
Poul Larsen ◽  
...  

The zwitterionic homopolymer poly[2-(methacryloyloxy)ethyl-dimethyl-(3-sulfopropyl) ammonium hydroxide was coated onto the surface of commercial polyamide reverse osmosis (RO) membranes. Aqueous solutions of the polymer at different concentrations were applied to modify the polyamide membranes through an in situ surface coating procedure. After membrane modification, cross-flow filtration testing was used to test the antifouling potential of the modified membranes. The obtained data were compared with experimental data for unmodified membranes. Each test was done by cross-flow filtering tap water for 60 hours. Yeast extract was added as a nutrient source for the naturally occurring bacteria in tap water, to accelerate bacteria growth. Fourier transform infrared spectroscopy, contact angle, scanning electron microscopy, atomic force microscopy, and permeation tests were employed to characterize membrane properties. The results confirmed that modifying the membranes enhanced their antifouling properties and cleaning efficiency, the fouling resistance to bacteria improving due to the increased hydrophilicity of the membrane surface after coating. In addition, the water permeability and salt rejection improved. This in situ surface treatment approach for RO membranes could be very important for modifying membranes in their original module assemblies as it increases water production and reduces the salt content.


Chemosphere ◽  
2019 ◽  
Vol 231 ◽  
pp. 103-112 ◽  
Author(s):  
Jesús Morón-López ◽  
Lucía Nieto-Reyes ◽  
Sonia Aguado ◽  
Rehab El-Shehawy ◽  
Serena Molina

2012 ◽  
Vol 562-564 ◽  
pp. 913-916
Author(s):  
Hai Du ◽  
Yan Bin Qu ◽  
Shu Kang Cheng

A novel, environmental friendly dynamic rotating electromagnetic heating-magnetizing device is proposed, which can heat up and magnetize the low temperature feed water of reverse osmosis system. The device converts input mechanical energy into heat energy completely. The structure and operation mechanism are discussed in detail, and the mathematical model of loss is established based on fundamental electromagnetic field theory. At last, the effects of water magnetization treated by the device are introduced, which inhibits scaling on the reverse osmosis membrane surface and slows down the corrosion of metal surface.


Sign in / Sign up

Export Citation Format

Share Document