scholarly journals Effect of concentration of calcium and sulfate ions on gypsum scaling of reverse osmosis membrane, mechanistic study

2020 ◽  
Vol 9 (6) ◽  
pp. 13459-13473
Author(s):  
Mohammad Y. Ashfaq ◽  
Mohammad A. Al-Ghouti ◽  
Dana A. Da’na ◽  
Hazim Qiblawey ◽  
Nabil Zouari
Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 309 ◽  
Author(s):  
Maxim Oshchepkov ◽  
Vladimir Golovesov ◽  
Anastasia Ryabova ◽  
Anatoly Redchuk ◽  
Sergey Tkachenko ◽  
...  

Gypsum scaling in reverse osmosis (RO) desalination process is studied in presence of a novel fluorescent 1,8-naphthalimide-tagged polyacrylate (PAA-F1) by fluorescent microscopy, scanning electron microscopy (SEM), dynamic light scattering (DLS) and a particle counter technique. A comparison of PAA-F1 with a previously reported fluorescent bisphosphonate HEDP-F revealed a better PAA-F1 efficacy, and a similar behavior of polyacrylate and bisphosphonate inhibitors under the same RO experimental conditions. Despite expectations, PAA-F1 does not interact with gypsum. For both reagents, it is found that scaling takes place in the bulk retentate phase via heterogeneous nucleation step. The background “nanodust” plays a key role as a gypsum nucleation center. Contrary to popular belief, an antiscalant interacts with “nanodust” particles, isolating them from calcium and sulfate ions sorption. Therefore, the number of gypsum nucleation centers is reduced, and in turn, the overall scaling rate is diminished. It is also shown that, the scale formation scenario changes from the bulk medium, in the beginning, to the sediment crystals growth on the membrane surface, at the end of the desalination process. It is demonstrated that the fluorescent-tagged antiscalants may become very powerful tools in membrane scaling inhibition studies.


Author(s):  
H. K. Plummer ◽  
E. Eichen ◽  
C. D. Melvin

Much of the work reported in the literature on cellulose acetate reverse osmosis membranes has raised new and important questions with regard to the dense or “active” layer of these membranes. Several thickness values and structures have been attributed to the dense layer. To ensure the correct interpretation of the cellulose acetate structure thirteen different preparative techniques have been used in this investigation. These thirteen methods included various combinations of water substitution, freeze drying, freeze sectioning, fracturing, embedding, and microtomy techniques with both transmission and scanning electron microscope observations.It was observed that several factors can cause a distortion of the structure during sample preparation. The most obvious problem of water removal can cause swelling, shrinking, and folds. Improper removal of embedding materials, when used, can cause a loss of electron image contrast and, or structure which could hinder interpretation.


2021 ◽  
Vol 196 ◽  
pp. 117006 ◽  
Author(s):  
Nicholas W. Bristow ◽  
Sarah J. Vogt ◽  
Szilard S. Bucs ◽  
Johannes S. Vrouwenvelder ◽  
Michael L. Johns ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 213
Author(s):  
Reema Mushtaq ◽  
Muhammad Asad Abbas ◽  
Shehla Mushtaq ◽  
Nasir M. Ahmad ◽  
Niaz Ali Khan ◽  
...  

A commercial thin film composite (TFC) polyamide (PA) reverse osmosis membrane was grafted with 3-sulfopropyl methacrylate potassium (SPMK) to produce PA-g-SPMK by atom transfer radical polymerization (ATRP). The grafting of PA was done at varied concentrations of SPMK, and its effect on the surface composition and morphology was studied by Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), optical profilometry, and contact angle analysis. The grafting of hydrophilic ionically charged PSPMK polymer brushes having acrylate and sulfonate groups resulted in enhanced hydrophilicity rendering a reduction of contact angle from 58° of pristine membrane sample labeled as MH0 to 10° for a modified membrane sample labeled as MH3. Due to the increased hydrophilicity, the flux rate rises from 57.1 L m−2 h−1 to 71.2 L m−2 h−1, and 99% resistance against microbial adhesion (Escherichia coli and Staphylococcus aureus) was obtained for MH3 after modification


Chemosphere ◽  
2021 ◽  
pp. 130033
Author(s):  
Sanghun Park ◽  
Seok Min Hong ◽  
Jongkwan Park ◽  
Sunam You ◽  
Younggeun Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document