Ultrafiltration of silica sols

1989 ◽  
Vol 54 (1) ◽  
pp. 91-101 ◽  
Author(s):  
Milan Stakić ◽  
Slobodan Milonjić ◽  
Vladeta Pavasović ◽  
Zoja Ilić

Ultrafiltration of three laboratory made silica and two commercial silica sols was studied using Amicon YC membrane in a 200 ml capacity batch-cell. The effect of silica particle size, stirring conditions, pressure, pH and silica contents on ultrafiltration was investigated. The results obtained indicate that the smaller particles have, disregarding the stirring conditions, lower filtration flux. The differences observed in filtration flux are more pronounced in the conditions without stirring. The obtained value of the membrane resistance is independent of the conditions investigated (stirring, pressure, pH, silica contents and particle size). The values of the resistance of polarized solids, specific resistance, and the mass of gel per membrane surface unit were calculated for all experimental conditions.

Author(s):  
Sachin V. Jadhav ◽  
Piia Häyrynen ◽  
Kumudini V. Marathe ◽  
Virendra K. Rathod ◽  
Riitta L. Keiski ◽  
...  

Abstract The application of nanofiltration membranes to remove sulfate and arsenic from wastewaters was investigated. The influence of operating parameters on the rejection and permeate flux was determined. The nanofiltration experiments carried out with NF90 and NF270 membranes showed a high rejection of sulfate (~90 %) and arsenic (~97 %) under the given set of experimental conditions. Better permeate flux values were obtained by NF270 membrane with a minor drop in rejections, but it proved to be better in water recovery. In FESEM analysis, the sulfate deposition on the membrane surface confirmed its well-known precipitation in desalination types of equipment. The experimental results were successfully predicted by using theoretical framework available in the literature. The simulation was carried out by using Levenberg–Marquardt with Gauss–Newton algorithm in MATLAB and the prime important parameters, viz. membrane resistance $({R_m})$ , permeability coefficient ${{\rm{P}}_{\rm{m}}}$ , and mass transfer coefficient (k) were established separately for each membrane. The gel layer thickness was determined to better understand the hydrodynamics over the membrane surface and it validated the assumption of negligible fouling.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 460
Author(s):  
Bastiaan Blankert ◽  
Bart Van der Bruggen ◽  
Amy E. Childress ◽  
Noreddine Ghaffour ◽  
Johannes S. Vrouwenvelder

The manner in which membrane-fouling experiments are conducted and how fouling performance data are represented have a strong impact on both how the data are interpreted and on the conclusions that may be drawn. We provide a couple of examples to prove that it is possible to obtain misleading conclusions from commonly used representations of fouling data. Although the illustrative example revolves around dead-end ultrafiltration, the underlying principles are applicable to a wider range of membrane processes. When choosing the experimental conditions and how to represent fouling data, there are three main factors that should be considered: (I) the foulant mass is principally related to the filtered volume; (II) the filtration flux can exacerbate fouling effects (e.g., concentration polarization and cake compression); and (III) the practice of normalization, as in dividing by an initial value, disregards the difference in driving force and divides the fouling effect by different numbers. Thus, a bias may occur that favors the experimental condition with the lower filtration flux and the less-permeable membrane. It is recommended to: (I) avoid relative fouling performance indicators, such as relative flux decline (J/J0); (II) use resistance vs. specific volume; and (III) use flux-controlled experiments for fouling performance evaluation.


2021 ◽  
Vol 83 (8) ◽  
Author(s):  
Valeria Cigala ◽  
Ulrich Kueppers ◽  
Juan José Peña Fernández ◽  
Donald B. Dingwell

AbstractPredicting the onset, style and duration of explosive volcanic eruptions remains a great challenge. While the fundamental underlying processes are thought to be known, a clear correlation between eruptive features observable above Earth’s surface and conditions and properties in the immediate subsurface is far from complete. Furthermore, the highly dynamic nature and inaccessibility of explosive events means that progress in the field investigation of such events remains slow. Scaled experimental investigations represent an opportunity to study individual volcanic processes separately and, despite their highly dynamic nature, to quantify them systematically. Here, impulsively generated vertical gas-particle jets were generated using rapid decompression shock-tube experiments. The angular deviation from the vertical, defined as the “spreading angle”, has been quantified for gas and particles on both sides of the jets at different time steps using high-speed video analysis. The experimental variables investigated are 1) vent geometry, 2) tube length, 3) particle load, 4) particle size, and 5) temperature. Immediately prior to the first above-vent observations, gas expansion accommodates the initial gas overpressure. All experimental jets inevitably start with a particle-free gas phase (gas-only), which is typically clearly visible due to expansion-induced cooling and condensation. We record that the gas spreading angle is directly influenced by 1) vent geometry and 2) the duration of the initial gas-only phase. After some delay, whose length depends on the experimental conditions, the jet incorporates particles becoming a gas-particle jet. Below we quantify how our experimental conditions affect the temporal evolution of these two phases (gas-only and gas-particle) of each jet. As expected, the gas spreading angle is always at least as large as the particle spreading angle. The latter is positively correlated with particle load and negatively correlated with particle size. Such empirical experimentally derived relationships between the observable features of the gas-particle jets and known initial conditions can serve as input for the parameterisation of equivalent observations at active volcanoes, alleviating the circumstances where an a priori knowledge of magma textures and ascent rate, temperature and gas overpressure and/or the geometry of the shallow plumbing system is typically chronically lacking. The generation of experimental parameterisations raises the possibility that detailed field investigations on gas-particle jets at frequently erupting volcanoes might be used for elucidating subsurface parameters and their temporal variability, with all the implications that may have for better defining hazard assessment.


2014 ◽  
Vol 70 (1) ◽  
pp. 136-143 ◽  
Author(s):  
K. Y. Lee ◽  
K. W. Kim ◽  
Y. J. Baek ◽  
D. Y. Chung ◽  
E. H. Lee ◽  
...  

The uranium(VI) adsorption efficiency of non-living biomass of brown algae was evaluated in various adsorption experimental conditions. Several different sizes of biomass were prepared using pretreatment and surface-modification steps. The kinetics of uranium uptake were mainly dependent on the particle size of the prepared Laminaria japonica biosorbent. The optimal particle size, contact time, and injection amount for the stable operation of the wastewater treatment process were determined. Spectroscopic analyses showed that uranium was adsorbed in the porous inside structure of the biosorbent. The ionic diffusivity in the biomass was the dominant rate-limiting factor; therefore, the adsorption rate was significantly increased with decrease of particle size. From the results of comparative experiments using the biosorbents and other chemical adsorbents/precipitants, such as activated carbons, zeolites, and limes, it was demonstrated that the brown algae biosorbent could replace the conventional chemicals for uranium removal. As a post-treatment for the final solid waste reduction, the ignition treatment could significantly reduce the weight of waste biosorbents. In conclusion, the brown algae biosorbent is shown to be a favorable adsorbent for uranium(VI) removal from radioactive wastewater.


2020 ◽  
Vol 17 (3) ◽  
pp. 493-505 ◽  
Author(s):  
Haoze Li ◽  
Bingxiang Huang ◽  
Qingying Cheng ◽  
Xinglong Zhao

Abstract Proppant placement concentration, particle size and creep time are important factors that affect the embedment of proppant into coal. Based on multistage creep, an orthogonal test is conducted, and an optimal proppant scheme for different closure stresses obtained. The results show that with increased proppant placement concentration, the number of coal fractures increases and the elastic modulus of the fracture area decreases. As the proppant particle size decreases, the plasticity of fracture-proppant assemblies increases gradually. The yield limit is highest when the particle size is 20/40 mesh. During the proppant embedding process, localization or uneven distribution of proppant results in tensile stress parallel to the fracture surface, which induces tensile fracture in the coal. In the fracture-proppant assembly areas, proppant fractures are severe and yield lines appear. As proppant concentration increases, more energy is accumulated during the proppant compaction stage, resulting in energy release producing craters and crevasses. The energy released also causes increased stress in the proppant-coal contact area and fracturing to the coal mass. The longer the creep time, the weaker the impact and the smaller is fluctuation. Moreover, we find that the orthogonal test can effectively analyze the importance of each parameter. Proppant placement concentration was found to have the highest influence on the process of proppant embedding into coal, followed by particle size and then time. Under experimental conditions, the lowest proppant-embedded value in coal samples was observed with proppant placement concentration of 2 kg m−2 and particle size of 20/40 mesh.


2016 ◽  
Vol Volume 112 (Number 11/12) ◽  
Author(s):  
Paul Kekana ◽  
Bruce Sithole ◽  
Deresh Ramjugernath ◽  
◽  
◽  
...  

Abstract Ultrafiltration of lignin from black liquor was carried out in a stirred batch cell using polyethersulfone membranes. Parameters such as operating pressure, feed concentration, stirring rate and membrane cut-off size were varied and their effects on lignin retention and permeate flux were investigated. The operating pressure, feed concentration and stirring rate were varied in the ranges 150–350 kPa, 3–9% and 200–400 rpm, respectively. The membranes used had cut-off sizes of 5 kDa, 10 kDa and 20 kDa. A one-factor-at-a-time experimental design approach was applied in this study. Retention of lignin increased with increases in operating pressure, feed concentration and stirring rate, but decreased with an increase in molecular cut-off size of the membrane. Permeate flux on the other hand increased with increases in pressure, stirring rate and molecular cut-off size of the membrane but decreased with an increase in feed concentration. The extraction of lignin from black liquor was successfully carried out and extraction efficiencies as high as 86% could be achieved depending on the experimental conditions. The study was concluded with the recommendation of conducting additional experiments using a pilot plant in a continuous mode.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7601
Author(s):  
Beatriz Arauzo ◽  
Álvaro González-Garcinuño ◽  
Antonio Tabernero ◽  
María Pilar Lobera ◽  
Jesús Santamaría ◽  
...  

A new approach based on the atomization of non-Newtonian fluids has been proposed to produce microparticles for a potential inhalation route. In particular, different solutions of alginate were atomized on baths of different crosslinkers, piperazine and barium chloride, obtaining microparticles around 5 and 40 microns, respectively. These results were explained as a consequence of the different viscoelastic properties, since oscillatory analysis indicated that the formed hydrogel beads with barium chloride had a higher storage modulus (1000 Pa) than the piperazine ones (20 Pa). Pressure ratio (polymer solution-air) was identified as a key factor, and it should be from 0.85 to 1.00 to ensure a successful atomization, obtaining the smallest particle size at intermediate pressures. Finally, a numerical study based on dimensionless numbers was performed to predict particle size depending on the conditions. These results highlight that it is possible to control the microparticles size by modifying either the viscoelasticity of the hydrogel or the experimental conditions of atomization. Some experimental conditions (using piperazine) reduce the particle size up to 5 microns and therefore allow their use by aerosol inhalation.


2019 ◽  
Vol 85 (1II)) ◽  
pp. 139-144
Author(s):  
N. P. Zaksas ◽  
A. F. Veryaskin

A two-jet plasma is used for direct atomic emission analysis of powdered samples. It is characterized by relatively weak matrix effects, which allows using unified calibration samples on the basis of graphite powder for analysis of the samples with inorganic, organic, and organomineral matrix. In the present paper the effects limiting the usage of the unified approach due to different thermal stability and evaporation efficiency of the samples are discussed. The understated concentrations of a set of elements (Al, Ba, Ca, La, Mg, Mn, Sr, Ti, and Y) were obtained in analysis of certified reference materials of geological samples. It was shown that determination of rare earth elements should be carried out in the region behind the jet confluence providing their complete evaporation. For other elements, registration of the spectra in this region improves the results to some extent but they do not achieve the certified values. To speed up evaporation of these elements, the experimental conditions were chosen for plasma chemical reactions which provide conversion of the matrix elements into more volatile compounds. Addition of ammonium hydrofluoride to powdered sample considerably increased the line intensities of Al and Ca strongly associated with the silicon matrix. Incomplete evaporation was observed in analysis of biological samples with particle size more than 100 μm. A decrease in consumption of carrier argon is quite enough for effective decomposition of the organic matrix in plasma; the value of gas consumption depends on thermal stability and particle size of the sample. Preliminary sample carbonization is another way to improve evaporation of biological samples.


2016 ◽  
Vol 718 ◽  
pp. 77-80 ◽  
Author(s):  
Worawat Jansomboon ◽  
Khatawut Boonmaloet ◽  
Suradet Sukaros ◽  
Paweena Prapainainar

Rice hull is a by-product natural material composing of high amount of silica. In this work, silica microparticles were synthesized from rice hull using 3 temperature levels of calcination at 500, 600, and 850 ºC. Then, they were transformed to silica nanoparticles by precipitation method using sodium silicate as an initial substance synthesized from rice hull. Finally, the properties of silica particle were studied such as characteristics, morphology of particle, component, and size of silica. The result showed the silica structure became more crystalline when the temperature was increased. When the concentration of sodium silicate increased, more agglutination occurred in the silica structure. The results also indicated that the particle size and component of silica synthesized by heating rice hull at 600 ºC followed by precipitation method were the same as those of commercial silica.


Sign in / Sign up

Export Citation Format

Share Document