scholarly journals Computational Investigation of the Folded and Unfolded Band Structure and Structural and Optical Properties of CsPb(I1−xBrx)3 Perovskites

Crystals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 342 ◽  
Author(s):  
Hamid M. Ghaithan ◽  
Zeyad A. Alahmed ◽  
Andreas Lyras ◽  
Saif M. H. Qaid ◽  
Abdullah S. Aldwayyan

The structural, electronic, and optical properties of inorganic CsPb(I1−xBrx)3 compounds were investigated using the full-potential linear augmented-plane wave (FP-LAPW) scheme with a generalized gradient approximation (GGA). Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) and modified Becke–Johnson GGA (mBJ-GGA) potentials were used to study the electronic and optical properties. The band gaps calculated using the mBJ-GGA method gave the best agreement with experimentally reported values. CsPb(I1−xBrx)3 compounds were wide and direct band gap semiconductors, with a band gap located at the M point. The spectral weight (SW) approach was used to unfold the band structure. By substituting iodide with bromide, an increase in the band gap energy (Eg) values of 0.30 and 0.55 eV, using PBE-GGA and mBJ-GGA potentials, respectively, was observed, whereas the optical property parameters, which were also investigated, demonstrated the reverse effect. The high absorption spectra in the ultraviolet−visible energy range demonstrated that CsPb(I1−xBrx)3 perovskite could be used in optical and optoelectronic devices by partly replacing iodide with bromide.

2012 ◽  
Vol 26 (30) ◽  
pp. 1250168 ◽  
Author(s):  
N. A. NOOR ◽  
A. SHAUKAT

This study describes structural, electronic and optical properties of Mg x Cd 1-x X (X = S, Se, Te) alloys in the complete range 0≤x ≤1 of composition x in the zinc-blende (ZB) phase with the help of full-potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method within density functional theory (DFT). In order to calculate total energy, generalized gradient approximation (Wu–Cohen GGA) has been applied, which is based on optimization energy. For electronic structure calculations, the corresponding potential is being optimized by Engel–Vosko GGA formalism. Our calculations reveal the nonlinear variation of lattice constant and bulk modulus with different concentration for the end binary and their ternary alloys, which slightly deviates from Vegard's law. The calculated band structures show a direct band gap for all three alloys with increasing order in the complete range of the compositional parameter x. In addition, we have discussed the disorder parameter (gap bowing) and concluded that the total band gap bowing is substantially influenced by the chemical (electronegativity) contribution. The calculated density of states (DOS) of these alloys is discussed in terms of contribution from various s-, p- and d-states of the constituent atoms and charge density distributions plots are analyzed. Optical properties have been presented in the form of the complex dielectric function ε(ω), refractive index n(ω) and extinction coefficient k(ω) as function of the incident photon energy, and the results have been compared with existing experimental data and other theoretical calculations.


2015 ◽  
Vol 29 (05) ◽  
pp. 1550028 ◽  
Author(s):  
R. Graine ◽  
R. Chemam ◽  
F. Z. Gasmi ◽  
R. Nouri ◽  
H. Meradji ◽  
...  

We carried out ab initio calculations of structural, electronic and optical properties of Indium nitride ( InN ) compound in both zinc blende and wurtzite phases, using the full-potential linearized augmented plane wave method (FP-LAPW), within the framework of density functional theory (DFT). For the exchange and correlation potential, local density approximation (LDA) and generalized gradient approximation (GGA) were used. Moreover, the alternative form of GGA proposed by Engel and Vosko (EV-GGA) and modified Becke–Johnson schemes (mBJ) were also applied for band structure calculations. Ground state properties such as lattice parameter, bulk modulus and its pressure derivative are calculated. Results obtained for band structure of these compounds have been compared with experimental results as well as other first principle computations. Our results show good agreement with the available data. The calculated band structure shows a direct band gap Γ → Γ. In the optical properties section, several optical quantities are investigated; in particular we have deduced the interband transitions from the imaginary part of the dielectric function.


2016 ◽  
Vol 257 ◽  
pp. 123-126 ◽  
Author(s):  
Salima Labidi ◽  
Jazia Zeroual ◽  
Malika Labidi ◽  
Kalthoum Klaa ◽  
Rachid Bensalem

First-principles calculations for electronic and optical properties under pressure effect of MgO, SrO and CaO compounds in the cubic structure, using a full relativistic version of the full-potential augmented plane-wave (FP-LAPW) method based on density functional theory, within the local density approximation (LDA) and the generalized gradient approximation (GGA), have been reported. Furthermore, band structure calculations have been investigated by the alternative form of GGA proposed by Engel and Vosko (GGA-EV) and modified by Becke-Johnson exchange correlation potential (MBJ-GGA). All calculated equilibrium lattices, bulk modulus and band gap at zero pressure are find in good agreement with the available reported data. The pressure dependence of band gap and the static optical dielectric constant are also investigated in this work.


2002 ◽  
Vol 744 ◽  
Author(s):  
C. Persson ◽  
R. Ahuja ◽  
J. Souza de Almeida ◽  
B. Johansson ◽  
C. Y. An ◽  
...  

ABSTRACTThe optical properties of SbBiI3 alloys have been investigated experimentally by absorption measurements and theoretically by a full-potential augmented plane wave (FPLAPW) method within the generalized gradient approximation. The fundamental band-gap energy of these alloys changes from BiI3- to SbI3-like with increasing percentage of Sb content. The calculated band-gap energies as well as the optical absorption were found to be in a very good qualitatively agreement with the experimental results. We present calculated density-of-states as well as the dielectric functions for evaluation of future experiments.


2017 ◽  
Vol 41 (3) ◽  
pp. 172-182
Author(s):  
Leila Sohrabi ◽  
Arash Boochani ◽  
S. Ali Sebt ◽  
S. Mohammad Elahi

Structural, electronic and optical properties of InAs are investigated in the zinc-blende (ZB), rock-salt (RS) and wurtzite (WZ) phases using the full potential linearised augmented plane wave method in the framework of density functional theory (DFT). The electronic band gap of the ZB and WZ phases are improved and in good agreement with experiments by GGA-EV approximation. This compound has a direct band gap in the ZB and WZ phases in point at the centre Brillouin zone and in the RS phase the conduction band crosses towards the valence band and has metallic behaviour. Also, the optical parameters such as the real and imaginary parts of epsilon, energy loss, and the refraction and reflection indices of all the phases are calculated and compared. The calculated optical properties of InAs have promising applications such as the design of optoelectronic and photonic devices.


2021 ◽  
Vol 66 (8) ◽  
pp. 699
Author(s):  
R. Yagoub ◽  
H. Rekkab Djabri ◽  
S. Daoud ◽  
N. Beloufa ◽  
M. Belarbi ◽  
...  

We report the results of first-principles total-energy calculations for structural properties of scandium nitride (ScN) semiconductor compound in NaCl-type (B1), CsCl-type (B2), zincblende-type (B3), wurtzite-type (B4), NiAs-type (B81), CaSi-type (Bc), B-Sn-type (A5), and CuAu-type (L10) structures. Calculations have been performed with the use of the all-electron full-potential linearized augmented plane wave FP-LAPW method based on density-functional theory (DFT) in the generalized gradient approximation (GGA) for the exchange correlation energy functional. We predict a new phase transition from the most stable cubic NaCl-type structure (B1) to the B-Sn-type one (A5) at 286.82 GPa with a direct band-gap energy of about 1.975 eV. Our calculations show that ScN transforms from the orthorhombic CaSi-type structure (Bc) to A5 at 315 GPa. In agreement with earlier ab initio works, we find that B1 phase transforms to Bc, L10, and B2 structures at 256.27 GPa, 302.08 GPa, and 325.97 GPa, respectively. The electronic structure of A5 phase shows that ScN exhibits a direct band-gap at X point, with Eg of about 1.975 eV.


2013 ◽  
Vol 846-847 ◽  
pp. 1919-1922
Author(s):  
Hong Liang Pan ◽  
Teng Li ◽  
Shi Liang Yang ◽  
Yi Ming Liu

The electronic-energy band structure and optical properties of SrTi0.5Zr0.5O3are calculated by the pseudo-potential plane wave (PP-PW) mehod with the generalized gradient approximation (GGA). The energy band structure, density of states (DOS) are obtained. The optical properties including the dielectric function, reflectivity, absorption spectrum, extinction coefficient, energy-loss spectrum and refractive index are also discussed.


2020 ◽  
Vol 98 (9) ◽  
pp. 834-848
Author(s):  
H. Rekab-Djabri ◽  
Mohamed Drief ◽  
Manal M. Abdus Salam ◽  
Salah Daoud ◽  
F. El Haj Hassan ◽  
...  

In this work, first principle calculations of the structural, electronic, elastic, and optical properties of novel AgBr1–xIx ternary alloys in rock-salt (B1) and zinc-blende (B3) structures are presented. The calculations were performed using the full-potential linear muffin-tin orbital (FP-LMTO) method within the framework of the density functional theory (DFT). The exchange and correlation potentials were treated according to the local density approximation (LDA). The lattice constants for the B1 and B3 phases versus iodide concentration (x) were found to deviate slightly from the linear relationship of Vegard’s law. The calculated electronic properties showed that AgBr1–xIx alloys in the B3 structure have a direct band gap (Γ – Γ) for all concentrations of x, which means that they can be used in long-wavelength optoelectronic applications, while in the B1 structure they have an indirect (Γ – R) band gap. The elastic constants Cij, shear modulus G, Young’s modulus E, Poisson’s ratio ν, index of ductility B/G, sound velocities vt, vl, and vm, and Debye temperature θD were also reported and analyzed. By incorporating the basic optical properties, we discussed the dielectric function, refractive index, optical reflectivity, absorption coefficient, and optical conductivity in terms of incident photon energy up to 13.5 eV. The present results were found to be in good agreement with the available experimental and other theoretical results.


Sign in / Sign up

Export Citation Format

Share Document