scholarly journals First-Principles Investigation of CO Adsorption on h-Fe7C3 Catalyst

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 635
Author(s):  
Jinzhe Fu ◽  
Deshuai Sun ◽  
Zhaojun Chen ◽  
Jian Zhang ◽  
Hui Du

h-Fe7C3 is considered as the main active phase of medium-temperature Fe-based Fischer–Tropsch catalysts. Basic theoretical guidance for the design and preparation of Fe-based Fischer–Tropsch catalysts can be obtained by studying the adsorption and activation behavior of CO on h-Fe7C3. In this paper, the first-principles method based on density functional theory is used to study the crystal structure properties of h-Fe7C3 and the adsorption and activation CO on its low Miller index surfaces ( 1 1 ¯ 0 ) , ( 1 1 ¯ 1 ) , ( 101 ) , ( 1 1 ¯ 1 ¯ ) and ( 001 ) . It was found that the low Miller index crystal plane of h-Fe7C3 crystal has multiple equivalent crystal planes and that the maximum adsorption energy of CO at the 3F2 point of the ( 1 1 ¯ 1 ) plane is −2.50 eV, indicating that h-Fe7C3 has a better CO adsorption performance. In addition, the defects generated at the truncated position of the h-Fe7C3 crystal plane have a great impact on the adsorption energy of CO on its surface, that is, the adsorption energy of CO on Fe atoms with C vacancies is higher. The activity of CO after adsorption is greatly affected by the adsorption configuration and less affected by the adsorption energy. The higher the coordination number of Fe atoms after adsorption, the higher the CO activity. At the same time, it was found that the bonding of O and Fe atoms is conducive to the activation of CO.

2018 ◽  
Vol 20 (39) ◽  
pp. 25246-25255 ◽  
Author(s):  
Yurong He ◽  
Peng Zhao ◽  
Jinjia Liu ◽  
Wenping Guo ◽  
Yong Yang ◽  
...  

To understand the chemical origin of platinum promotion effects on iron based Fischer–Tropsch synthesis catalysts, the effects of Pt on CO adsorption and dissociation as well as surface carbon hydrogenation on the Fe5C2(100) facet with different surface C* contents have been studied using the spin-polarized density functional theory method.


Coatings ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 390 ◽  
Author(s):  
Tianhan Liu ◽  
Hongbo Qin ◽  
Daoguo Yang ◽  
Guoqi Zhang

For the purpose of exploring the application of two-dimensional (2D) material in the field of gas sensors, the adsorption properties of gas molecules, CO, CO2, CH2O, O2, NO2, and SO2 on the surface of monolayered tin selenium in β phase (β-SnSe) has been researched by first principles calculation based on density functional theory (DFT). The results indicate that β-SnSe sheet presents weak physisorption for CO and CO2 molecules with small adsorption energy and charge transfers, which show that a β-SnSe sheet is not suitable for sensing CO and CO2. The adsorption behavior of CH2O molecules adsorbed on a β-SnSe monolayer is stronger than that of CO and CO2, revealing that the β-SnSe layer can be applied to detect CH2O as physical sensor. Additionally, O2, NO2, and SO2 are chemically adsorbed on a β-SnSe monolayer with moderate adsorption energy and considerable charge transfers. All related calculations reveal that β-SnSe has a potential application in detecting and catalyzing O2, NO2, and SO2 molecules.


2021 ◽  
Vol 1016 ◽  
pp. 1863-1868
Author(s):  
Norio Nunomura ◽  
Jun Yamashita ◽  
Satoshi Sunada

In this study, we investigated the influence of the interaction between graphene and other materials as a basis for controlling the electronic structure of nanocarbon materials. First-principles calculations based on density functional theory (DFT) were performed on the optimized structure, adsorption energies and electronic states when copper and aluminum atoms were placed on graphene. As a result, we found that copper and aluminum are stable at the bridge and the hollow site, respectively. It was found that the adsorption energy of aluminum atom on graphene is larger than that of copper atom. It is considered that the difference in adsorption energy is caused by the difference in the dominant electron orbitals of the copper atom and the aluminum atom.


2016 ◽  
Vol 30 (25) ◽  
pp. 1650176 ◽  
Author(s):  
Shuying Zhong ◽  
Fanghua Ning ◽  
Fengya Rao ◽  
Xueling Lei ◽  
Musheng Wu ◽  
...  

Atomic adsorptions of N, C and O on silicene and molecular adsorptions of N2 and CO on silicene have been investigated using the density functional theory (DFT) calculations. For the atomic adsorptions, we find that the N atom has the most stable adsorption with a higher adsorption energy of 8.207 eV. For the molecular adsorptions, we find that the N2 molecule undergoes physisorption while the CO molecule undergoes chemisorption, the corresponding adsorption energies for N2 and CO are 0.085 and 0.255 eV, respectively. Therefore, silicene exhibits more reactivity towards the CO adsorption than the N2 adsorption. The differences of charge density and the integrated charge calculations suggest that the charge transfer for CO adsorption ([Formula: see text]0.015[Formula: see text]) is larger than that for N2 adsorption ([Formula: see text]0.005[Formula: see text]). This again supports that CO molecule is more active than N2 molecule when they are adsorbed onto silicene.


2017 ◽  
Vol 890 ◽  
pp. 117-120
Author(s):  
Seba Sara Varghese ◽  
Sundaram Swaminathan ◽  
Krishna Kumar Singh ◽  
Vikas Mittal

The adsorption of molecular oxygen on gallium doped graphene sheet is investigated using first-principles density functional theory calculations. The adsorption energy of O2 on gallium doped graphene is calculated after determining the energetically favourable adsorption configuration. The change in the electronic properties of gallium doped graphene after O2 adsorption is also determined to understand the nature their interactions. The results show that gallium doped graphene has large adsorption energy and small binding distance, which correspond to chemical adsorption. The calculated band structure and density of states plots of gallium doped graphene before and after adsorption show dramatic changes in the electronic properties due to the strong interactions of gallium doped graphene with adsorbed O2 molecule. These results indicate that gallium doped graphene is highly reactive to molecular oxygen and hence not a suitable choice for harmful gas detection in the presence of O2.


2012 ◽  
Vol 217-219 ◽  
pp. 1811-1814
Author(s):  
Xue Tao Hu ◽  
Qiang Luo ◽  
Zeng Ling Ran

Using periodic density functional theory within the generalized-gradient approximation to electron exchange and correlation, we have studied S adsorption four-fold hollow site on Fe(100) in different hydrostatic pressure. We find that the adsorption height decreases with hydrostatic pressure increasing is non-monotonic. The adsorption energy decreases with an increase with pressure is monotonic and we have obtained density of states is almost unchanged, the adsorption energy change is mainly caused by lattice deformation in the hydrostatic pressure, and the adsorption energies increase linearly with pressure.


2017 ◽  
Vol 31 (29) ◽  
pp. 1750216
Author(s):  
Yafei zhang ◽  
Xinlu Cheng

We use the first-principles calculation based on density functional theory (DFT) to investigate the hydrogen storage of Li decorated coronene graphene. Our result indicates that single Li atom can adsorb three H2 molecules and the adsorption energy per H2 is −0.224 eV. When four Li atoms doped, the largest hydrogen gravimetric density is 6.82 wt.% and this is higher than the 2017 target by the US department of energy (DOE). Meanwhile, the adsorption energy per H2 is −0.220 eV, which is suitable for H2 molecules to store. Therefore, Li decorated coronene graphene will be a candidate for hydrogen storage materials in the future.


2011 ◽  
Vol 399-401 ◽  
pp. 2261-2265 ◽  
Author(s):  
Jian Gong Hu ◽  
Yi Sheng Zhang ◽  
Li Chao Jia ◽  
Bin Zhu ◽  
Hong Guang Yang ◽  
...  

First-principles calculation based on the density functional theory in the generalized gradient approximation was adopted to systematically investigate the α-Al2O3(0001) surface structure and the adsorption of H atom on the α-Al2O3(0001) surface. The calculations show that the O atop site is the energetically most favorable adsorption site at low coverage: at the H coverage of 1/6 ML (monolayer), the adsorption energy reaches up to7.61eV; in the regime of higher H coverages, the H atoms prefer to form atom cluster on the α-Al2O3(0001) surface, and the adsorption energy on the α-Al2O3(0001) with a pre-adsorbed H atom gets smaller, which illustrates that α-Al2O3that can prevent the penetration of hydrogen. With the increase of H coverage, the dipole moment reduces, which leads to a large decrease in the work function.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 563
Author(s):  
Hee-Joon Chun ◽  
Yong Tae Kim

Fischer–Tropsch synthesis (FTS), which converts CO and H2 into useful hydrocarbon products, has attracted considerable attention as an efficient method to replace crude oil resources. Fe-based catalysts are mainly used in industrial FTS, and Fe7C3 is a common carbide phase in the FTS reaction. However, the intrinsic catalytic properties of Fe7C3 are theoretically unknown. Therefore, as a first attempt to understand the FTS reaction on Fe7C3, direct CO* dissociation on orthorhombic Fe7C3(001) (o-Fe7C3(001)) surfaces was studied using density functional theory (DFT) calculations. The surface energies of 14 terminations of o-Fe7C3(001) were first compared, and the results showed that (001)0.20 was the most thermodynamically stable termination. Furthermore, to understand the effect of the surface C atom coverage on CO* activation, C–O bond dissociation was performed on the o-Fe7C3(001)0.85, (001)0.13, (001)0.20, (001)0.09, and (001)0.99 surfaces, where the surface C atom coverages were 0.00, 0.17, 0.33, 0.33, and 0.60, respectively. The results showed that the CO* activation linearly decreased as the surface C atom coverage increased. Therefore, it can be concluded that the thermodynamic and kinetic selectivity toward direct CO* dissociation increased when the o-Fe7C3(001) surface had more C* vacancies.


2014 ◽  
Vol 21 (06) ◽  
pp. 1450087 ◽  
Author(s):  
XIAOLIANG FANG ◽  
XIAOLI FAN ◽  
RUNXIN RAN ◽  
PIN XIAO

The nondissociative and dissociated adsorptions of 4-methylbenzenethiol (4-MBT) and 4-ethylbenzenethiol (4-EBT) on Au (111) surface were studied by applying the first-principles method based on density functional theory. The effects of coverage and vdW interactions on adsorptions were investigated. Adsorption energies and tilt angles of both 4-MBT and 4-EBT decrease with the increase of the coverage, and vdW interactions can affect the adsorption configuration and energy. More importantly, in the case of 4-EBT adsorption, we have studied the effects of ethyl group's orientation on the adsorption configuration and energy. Calculation results show that ethyl group's orientation has little effect on the adsorption energy, but changes the tilt angle by around 7°. Our calculations provide a deeper elucidation of the observed adsorption configuration for 4-EBT on Au (111).


Sign in / Sign up

Export Citation Format

Share Document