scholarly journals Polyethylenimine-Ethoxylated Interfacial Layer for Efficient Electron Collection in SnO2-Based Inverted Organic Solar Cells

Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 731
Author(s):  
Ikram Anefnaf ◽  
Safae Aazou ◽  
Guy Schmerber ◽  
Siham Refki ◽  
Nicolas Zimmermann ◽  
...  

In this work, we studied inverted organic solar cells based on bulk heterojunction using poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C71-butyric acid methyl ester (P3HT:PCBM) as an active layer and a novel cathode buffer bilayer consisting of tin dioxide (SnO2) combined with polyethylenimine-ethoxylated (PEIE) to overcome the limitations of the single cathode buffer layer. The combination of SnO2 with PEIE is a promising approach that improves the charge carrier collection and reduces the recombination. The efficient device, which is prepared with a cathode buffer bilayer of 20 nm SnO2 combined with 10 nm PEIE, achieved Jsc = 7.86 mA/cm2, Voc = 574 mV and PCE = 2.84%. The obtained results exceed the performances of reference solar cell using only a single cathode layer of either SnO2 or PEIE.

2015 ◽  
Vol 3 (24) ◽  
pp. 6209-6217 ◽  
Author(s):  
Ganesh D. Sharma ◽  
S. A. Siddiqui ◽  
Agapi Nikiforou ◽  
Galateia E. Zervaki ◽  
Irene Georgakaki ◽  
...  

A mono(carboxy)porphyrin-triazine-(bodipy)2triad(PorCOOH)(BDP)2has been used as a donor with ([6,6]-phenyl C71butyric acid methyl ester) (PC71BM) as an acceptor, in BHJ - solution processed organic solar cells.


2010 ◽  
Vol 663-665 ◽  
pp. 823-827 ◽  
Author(s):  
Vivi Fauzia ◽  
Akrajas Ali Umar ◽  
Muhamad Mat Salleh ◽  
Muhammad Yahaya

Bulk heterojunction organic solar cells made of blended of the electron donor (D) and electron acceptor (A) molecules were fabricated using inkjet printing technique with three different D:A ratios i.e. 1:3, 1:1 and 3:1 (weight). Poly (3-octylthiophene-2,5-diyl) (P3OT) and (6,6)-phenyl C71 butyric acid methyl ester (PC71BM) were used as donor and acceptor respectively. The generated photocurrents and the power conversion efficiency depend on the donor: acceptor ratio, where the device D:A ratio 3:1 generated higher photocurrent. The photovoltaic performance of the devices may also affected by the microstructure and surface morphology of the active layer film.


2017 ◽  
Vol 751 ◽  
pp. 435-441
Author(s):  
Wantana Koetniyom ◽  
Anusit Keawprajak ◽  
Kanpitcha Jiramitmongkon ◽  
Udom Asawapirom

This research was focused on the effect of solid crystallization additive namely 1,4-dichlorobenzene (PDCB) in the 1:2 (w/w) active layer of benzothiadiazole/thiophene-based copolymers (PFTBzTT) to [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) on the morphology and performance of bulk heterojunction (BHJ) organic solar cells. The active layer was deposited by spin-coating with chloroform solutions by different PDCB additive concentrations from 0-52 mg/ml. The inclusion of additive into the polymer solution was able to improve the performance of BHJ solar cells. The maximum power conversion efficiency (PCE) of 0.84% achieved for a cell with PDCB concentration of 36 mg/ml after annealing at 180 °C for 20 min. The XRD and TEM techniques used to analyse the crystal structure and morphology of the thin films. From these results were found that PDCB additive presented higher level of PCBM crystal structure by more aggregation of PCBM and a larger extent of phase separation than those of the films without additive. The AFM results demonstrated that the optimum PDCB concentration and annealing process helped PCBM aggregated into micron sized crystal rods.


2014 ◽  
Vol E97.C (5) ◽  
pp. 405-408 ◽  
Author(s):  
Shunjiro FUJII ◽  
Takanori OKUKAWA ◽  
Zongfan DUAN ◽  
Yuichiro YANAGI ◽  
Masaya OHZEKI ◽  
...  

2019 ◽  
Vol 28 (1) ◽  
pp. 66-73
Author(s):  
Ismail Borazan ◽  
Ayşe Celik Bedeloğlu ◽  
Ali Demir

In this article, the improvement in electrical performance of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS) as the transparent electrode doped with different additives (ethylene glycol (EG), isopropyl alcohol) or treatment of sulfuric acid was enhanced that organic solar cells (OSCs) were produced by using poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl C61 butyric acid methyl ester. OSCs were fabricated by the doped or treated PEDOT:PSS films as transparent electrodes. The photoelectrical measurements were carried out and the effects of doping or treatment were compared. As a result, EG-added PEDOT:PSS electrode showed the best power conversion efficiency value of 1.87% among the PEDOT:PSS anodes.


2008 ◽  
Vol 1091 ◽  
Author(s):  
Daniel Tobjork ◽  
Harri Aarnio ◽  
Tapio Mäkelä ◽  
Ronald Österbacka

AbstractThe roll-to-roll reverse gravure (RG) coating technique was used to produce thin homogeneous films (∼100 nm) for organic bulk heterojunction solar cells. The conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) and the active layer regioregular poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) were successfully subsequently RG coated on an ITO covered plastic substrate in ambient air. Working solar cells were achieved after annealing and thermal evaporation of the top contact. The AM1.5 power conversion efficiency (PCE) of the RG coated organic solar cells was determined to 0.74% (at 100 mW/cm2). This was very similar to the results of a reference device that was spin coated on a glass substrate in a nitrogen glove box.


2013 ◽  
Vol 538 ◽  
pp. 3-6
Author(s):  
Yuichiro Yanagi ◽  
Takanori Okukawa ◽  
Akira Yoshida ◽  
Masaya Ohzeki ◽  
Tatsuki Yanagidate ◽  
...  

Bulk-heterojunction solar cells were fabricated based on poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) on an indium tin oxide (ITO) coated flexible polyethylene terephthalate (PET) substrate. Performance improvements of the flexible solar cells by optimizing post thermal annealing conditions are reported. The solar cells annealed at 150 oC showed the minimal deformation of the PET substrate, and the resulted conversion efficiency was 1.35% under the light irradiation conditions of the Superscript textAM1.5 simulated solar intensity of 100 mW/cm2.


Sign in / Sign up

Export Citation Format

Share Document