scholarly journals Petawatt Femtosecond Laser Pulses from Titanium-Doped Sapphire Crystal

Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 783
Author(s):  
Hiromitsu Kiriyama ◽  
Alexander S. Pirozhkov ◽  
Mamiko Nishiuchi ◽  
Yuji Fukuda ◽  
Akito Sagisaka ◽  
...  

Ultra-high intensity femtosecond lasers have now become excellent scientific tools for the study of extreme material states in small-scale laboratory settings. The invention of chirped-pulse amplification (CPA) combined with titanium-doped sapphire (Ti:sapphire) crystals have enabled realization of such lasers. The pursuit of ultra-high intensity science and applications is driving worldwide development of new capabilities. A petawatt (PW = 1015 W), femtosecond (fs = 10−15 s), repetitive (0.1 Hz), high beam quality J-KAREN-P (Japan Kansai Advanced Relativistic ENgineering Petawatt) Ti:sapphire CPA laser has been recently constructed and used for accelerating charged particles (ions and electrons) and generating coherent and incoherent ultra-short-pulse, high-energy photon (X-ray) radiation. Ultra-high intensities of 1022 W/cm2 with high temporal contrast of 10−12 and a minimal number of pre-pulses on target has been demonstrated with the J-KAREN-P laser. Here, worldwide ultra-high intensity laser development is summarized, the output performance and spatiotemporal quality improvement of the J-KAREN-P laser are described, and some experimental results are briefly introduced.

Crystals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 347
Author(s):  
Dabu

This paper describes techniques for high-energy laser pulse amplification in multi-PW femtosecond laser pulses. Femtosecond laser pulses can be generated and amplified in laser media with a broad emission spectral bandwidth, like Ti:sapphire crystals. By chirped pulse amplification (CPA) techniques, hundred-Joule amplified laser pulses can be obtained. Multi-PW peak-power femtosecond pulses are generated after recompression of amplified chirped laser pulses. The characteristics and problems of large bandwidth laser pulses amplification in Ti:sapphire crystals are discussed. An alternative technique, based on optical parametric chirped pulse amplification (OPCPA) in nonlinear crystals, is presented. Phase-matching conditions for broad bandwidth parametric amplification in nonlinear crystals are inferred. Ultra-broad phase matching bandwidth of more than 100 nm, able to support the amplification of sub-10 fs laser pulses, are demonstrated in nonlinear crystals, such as Beta Barium Borate (BBO), Potassium Dideuterium Phosphate (DKDP), and Lithium Triborate (LBO). The advantages and drawbacks of CPA amplification in laser crystals and OPCPA in nonlinear crystals are discussed. A hybrid amplification method, which combines low-medium energy OPCPA in nonlinear crystals with high energy CPA in large aperture laser crystals, is described. This technique is currently used for the development of 10-PW laser systems, with sub-20 fs pulse duration and more than 1012 intensity contrast of output femtosecond pulses.


2021 ◽  
Vol 127 (7) ◽  
Author(s):  
A. Andreev ◽  
J. Imgrunt ◽  
V. Braun ◽  
I. Dittmar ◽  
U. Teubner

AbstractThe interaction of intense femtosecond laser pulses with solid targets is a topic that has attracted a large amount of interest in science and applications. For many of the related experiments a large energy deposition or absorption as well as an efficient coupling to extreme ultraviolet (XUV), X-ray photon generation, and/or high energy particles is important. Here, much progress has been made in laser development and in experimental schemes, etc. However, regarding the improvement of the target itself, namely its geometry and surface, only limited improvements have been reported. The present paper investigates the formation of laser-induced periodic surface structures (LIPSS or ripples) on polished thick copper targets by femtosecond Ti:sapphire laser pulses. In particular, the dependence of the ripple period and ripple height has been investigated for different fluences and as a function of the number of laser shots on the same surface position. The experimental results and the formation of ripple mechanisms on metal surfaces in vacuum by femtosecond laser pulses have been analysed and the parameters of the experimentally observed “gratings” interpreted on base of theoretical models. The results have been specifically related to improve high-intensity femtosecond-laser matter interaction experiments with the goal of an enhanced particle emission (photons and high energy electrons and protons, respectively). In those experiments the presently investigated nanostructures could be generated easily in situ by multiple pre-pulses irradiated prior to a subsequent much more intense main laser pulse.


2008 ◽  
Author(s):  
Akito Sagisaka ◽  
Hiroyuki Daido ◽  
Akifumi Yogo ◽  
Koichi Ogura ◽  
Satoshi Orimo ◽  
...  

2021 ◽  
Vol 64 (1) ◽  
pp. 154-164
Author(s):  
A.A. Zemlyanov ◽  
◽  
Y.E. Geints ◽  
O.V. Minina ◽  
◽  
...  

The characteristics of the domain of multiple filamentation of femtosecond laser pulses in air were estimated based on the single filamentation model. As the single filamentation model, the diffraction-ray model is considered. It is based on the representation of a laser beam as a set of diffraction-ray tubes nested in each other that do not intersect in space and do not exchange energy with each other. In this situation changes in tubes shape and cross section during propagation demonstrate the effect of physical processes that occur with radiation in the medium. It is shown that the use of this model for interpreting experimental results and predicting effects is effective. In particular, it was demonstrated that the radius of small-scale intensity inhomogeneities in the profile of a centimeter laser beam, forming the domain of multiple filamentation of subterawatt femtosecond laser pulses, is several millimeters. The power in these inhomogeneities varies from several units to several tens of gigawatts. Telescoping the initial laser beam, leading to an increase in its radius, also expands the sizes of the initial small-scale intensity inhomogeneities and reduces the power contained in them. As a result of this, the coordinate of the filamentation beginning shifts along the path from the source of laser pulses. As the peak power in the beam increases, the length of the filaments and their number increase.


Author(s):  
T. Ditmire ◽  
J. W. G. Tisch ◽  
E. Springate ◽  
M. B. Mason ◽  
N. Hay ◽  
...  

2018 ◽  
Vol 89 (11) ◽  
pp. 115106 ◽  
Author(s):  
Genbai Chu ◽  
Tao Xi ◽  
Minghai Yu ◽  
Wei Fan ◽  
Yongqiang Zhao ◽  
...  

2000 ◽  
Vol 34 (4-6) ◽  
pp. 273-288 ◽  
Author(s):  
A. Kuhn ◽  
I.J. Blewett ◽  
D.P. Hand ◽  
P. French ◽  
M. Richmond ◽  
...  

2002 ◽  
Vol 20 (2) ◽  
pp. 321-336 ◽  
Author(s):  
DIMITRI BATANI

The paper reviews and analyses the experiments devoted to the propagation in dense matter of fast electrons produced in the interaction of short-pulse ultra-high-intensity laser pulses with solid density targets.


Sign in / Sign up

Export Citation Format

Share Document