Molecular Dynamics and Kinetics of Isothermal Cold Crystallization in the Chiral Smectogenic 3F7HPhH6 Glassformer

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1487
Author(s):  
Aleksandra Deptuch ◽  
Małgorzata Jasiurkowska-Delaporte ◽  
Ewa Juszyńska-Gałązka ◽  
Anna Drzewicz ◽  
Wojciech Zając ◽  
...  

An investigation of the glass transition of the antiferroelectric smectic C*A phase and cold crystallization of (S)-4’-(1-methylheptylcarbonyl)biphenyl-4-yl 4-[7-(2,2,3,3,4,4,4-heptafluoro- butoxy)heptyl-1-oxy]benzoate (denoted as 3F7HPhH6) by differential scanning calorimetry, polarizing optical microscopy and broadband dielectric spectroscopy is presented. The fragility index mf = 72, classifying 3F7HPhH6 as a glassformer with intermediate fragility, was obtained from the temperature dependence of the α-process relaxation time, measured upon cooling. Duplication of the α-process was observed exclusively upon heating, before the onset of cold crystallization, and is connected with the pre-transitional effect. The presence of two crystal phases likely influences the kinetics of cold crystallization; the idea stems from a comparison with previous results for the 3F7HPhF6 and 3F7HPhH7 compounds. Additionally, the presence of the smectic C*α; sub-phase in a narrow temperature range was proved based on the differential scanning calorimetry and broadband dielectric spectroscopy results, as well as the fractal dimension analysis of the textures obtained by polarizing optical microscopy.

Crystals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 205 ◽  
Author(s):  
Małgorzata Jasiurkowska-Delaporte ◽  
Tomasz Rozwadowski ◽  
Ewa Juszyńska-Gałązka

The kinetics of the non-isothermal and isothermal crystallization of the crystalline smectic B phase (soft crystal B, SmBcr) in 4-n-butyloxybenzylidene-4′-n′-octylaniline (BBOA) was studied by a combination of differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS) and polarized optical microscopy (POM). On cooling, part of the SmBcr phase undergoes conversion to a crystalline phase and the remainder forms a glassy state; after the glass softens, crystallization is completed during subsequent heating. By analyzing the area of the crystal growing in the texture of SmBcr as a function of time, the evolution of degree of crystallinity, D(t), was estimated. It was demonstrated that upon heating, D(t) follows the same Avrami curve as the crystallization during cooling. Non-isothermal crystallization observed during slow cooling rates (3K/min ≤ ϕ ≤ 5K/min) is a thermodynamically-controlled process with the energy barrier Ea ≈ 175 kJ/mol; however, the crystallization occurring during fast cooling (5 K/min > ϕ ≥ 30K/min) is driven by a diffusion mechanism, and is characterized by Ea ≈ 305 kJ/mol. The isothermal crystallization taking place in the temperature range 274 K and 281 K is determined by nucleus formation.


Sign in / Sign up

Export Citation Format

Share Document