scholarly journals TiO2 Modified Geopolymers for the Photocatalytic Dye Decomposition

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1511
Author(s):  
Martina Novotná ◽  
Petr Knotek ◽  
Tomáš Hanzlíček ◽  
Petr Kutálek ◽  
Ivana Perná ◽  
...  

This article studies the photocatalytic activity of three types of industrially produced TiO2 powder (P25, CG100 and CG300) incorporated into a parent geopolymer matrix, and their pure counterparts, based on the decomposition of Rhodamine B dye. Rhodamine B dye is applied as a model substance because it is frequently used in the textile industry and thus may be present in the wastewater. The average particle size, specific surface area and mineralogical composition of TiO2 powders have been determined. The geopolymer matrix works well as a supporting material for the CG100 and P25 pure types of TiO2 powder as these input materials have better properties such as a higher average particle size, lower specific surface area, mineralogicalcomposition, etc., than the CG300 TiO2 powder. These properties (or their combination) affect the photocatalytic activity of the resulting materials, which may thus become advanced composites with an additional purifying ability, e.g., materials that can be used for wastewater treatment or air purification.

2016 ◽  
Vol 7 ◽  
pp. 721-732 ◽  
Author(s):  
Jacek Wojnarowicz ◽  
Roman Mukhovskyi ◽  
Elzbieta Pietrzykowska ◽  
Sylwia Kusnieruk ◽  
Jan Mizeracki ◽  
...  

Mn-doped zinc oxide nanoparticles were prepared by using the microwave solvothermal synthesis (MSS) technique. The nanoparticles were produced from a solution of zinc acetate dihydrate and manganese(II) acetate tetrahydrate using ethylene glycol as solvent. The content of Mn2+ in Zn1− x Mn x O ranged from 1 to 25 mol %. The following properties of the nanostructures were investigated: skeleton density, specific surface area (SSA), phase purity (XRD), lattice parameters, dopant content, average particle size, crystallite size distribution, morphology. The average particle size of Zn1− x Mn x O was determined using Scherrer’s formula, the Nanopowder XRD Processor Demo web application and by converting the specific surface area results. X-ray diffraction of synthesized samples shows a single-phase wurtzite crystal structure of ZnO without any indication of additional phases. Spherical Zn1− x Mn x O particles were obtained with monocrystalline structure and average particle sizes from 17 to 30 nm depending on the content of dopant. SEM images showed an impact of the dopant concentration on the morphology of the nanoparticles.


2010 ◽  
Vol 92 ◽  
pp. 163-169
Author(s):  
Hong Xia Qiao ◽  
Zhi Qiang Wei ◽  
Ming Ru Zhou ◽  
Zhong Mao He

Copper nanoparticles were successfully prepared in large scales by means of anodic arc discharging plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), BET equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). The experiment results indicate that the crystal structure of the samples is fcc structure as same as that of the bulk materials. The specific surface area is is 11 m2/g, with the particle size distribution ranging from 30 to 90 nm, the average particle size about 67nm obtained from TEM and confirmed from XRD and BET results. The nanoparticles have uniform size, higher purity, narrow size distribution and spherical shape can be prepared by this convenient and effective method.


2020 ◽  
Vol 20 (6) ◽  
pp. 3770-3779 ◽  
Author(s):  
Umar Farooq ◽  
Farheen Naz ◽  
Ruby Phul ◽  
Nayeem Ahmad Pandit ◽  
Sapan Kumar Jain ◽  
...  

This paper reports the attempt to develop an efficient heterostructure photocatalyst by employing SrZrO3 as ferroelectric substrate with deposited nanostructured CdS semiconductor on the surface. Primarily bare SrZrO3 and CdS nanoparticles were synthesized by using polymeric citrate precursor and co-precipitation routes, respectively. The chemical deposition technique was used to develop the CdS over the surface of the pre-synthesized SrZrO3 nanoparticles. The synthesized bare nanoparticles and their heterostructure were characterized by XRD which shows the formation of orthorhombic and face centred cubic (FCC) phases of SrZrO3 and CdS, respectively. TEM was used to estimate the morphology and particle size of as-synthesized nanoparticles, which shows the average particle size of 14, 24 and 25 nm for SrZrO3, CdS and SrZrO3/CdS, respectively. The BET surface area of SrZrO3, CdS and SrZrO3/CdS samples was found to be 299, 304 and 312 m2/g respectively. Methylene blue was used as model pollutant to determine the photocatalytic activity of the synthesized nanomaterials. The heterostructure shows an enhanced activity as compared to bare nanoparticles. Dielectric constant and dielectric loss of the nanoparticles was investigated as a function of frequency at room temperature and as a function of temperature at 500 kHz. The room temperature dielectric constant for SrZrO3, CdS and SrZrO3/CdS was found to be 13.2, 17.8 and 25.5 respectively at 100 kHz.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Hongxia Qiao ◽  
Zhiqiang Wei ◽  
Hua Yang ◽  
Lin Zhu ◽  
Xiaoyan Yan

NiO nanoparticles with average particle size of 25 nm were successfully prepared by anodic arc plasma method. The composition, morphology, crystal microstructure, specific surface area, infrared spectra, and particle size distribution of product were analyzed by using X-ray diffraction (XRD), transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED), Fourier transform infrared (FTIR) spectrum, and Brunauer-Emmett-Teller (BET)N2adsorption. The experiment results show that the NiO nanoparticles are bcc structure with spherical shape and well dispersed, the particle size distribution ranging from 15 to 45 nm with the average particle size is about 25 nm, and the specific surface area is 33 m2/g. The infrared absorption band of NiO nanoparticles shows blue shifts compared with that of bulk NiO.


2014 ◽  
Vol 698 ◽  
pp. 452-456 ◽  
Author(s):  
Ekaterina A. Nosova ◽  
Antonina A. Kuzina ◽  
Anna V. Kuts

Compacting after pressing and sintering of briquettes made from an aluminum powder with an average particle size from 50 to 150 microns, the specific surface area Ssp=0.26 m2/g and a nickel powder with an average particle size from 25 to 100 microns, the specific surface area Ssp= 0.03 m2/g has been investigated. Pressing load varied from 15 to 25 MPa for the aluminum powder and from 20 to 45 MPa for the nickel powder. Sintering of aluminum powder briquettes was carried out at temperatures (0.5-0.83) of melting temperature, (0.3-0.46) of melting temperature from the nickel powder. It is shown that the application of high pressure, low temperatures and short time makes it possible to receive pseudo-ligatures from an aluminum powder with porosity about 32% and a nickel powder with porosity about 30%.


2007 ◽  
Vol 119 ◽  
pp. 43-46
Author(s):  
Sang Jin Lee ◽  
Choong Hwan Jung

Nano scaled mullite (3Al2O3·2SiO2) powders had been fabricated by an organic-inorganic solution technique using a polyvinyl alcohol (PVA) as an organic carrier. PVA polymer contributed to a soft and porous powder microstructure, and ball milling with the porous powder was effective in making nano-sized mullite powders. In addition, the degree of polymerization of PVA affected the crystallization behavior. The fully crystallized and ball-milled mullite powders had an average particle size of 120 nm with a specific surface area of 67.0 m2/g. In this paper, the simple solution technique and milling process for the fabrication of nano scaled mullite powders are introduced. And the effects of PVA on the crystallization behavior and powder specific surface area are also studied. The characteristics of the synthesized powders are examined by using XRD, TEM, particle size analyzer and nitrogen gas adsorption.


2011 ◽  
Vol 415-417 ◽  
pp. 751-755
Author(s):  
Zhi Qiang Wei ◽  
Xiao Juan Wu ◽  
Li Gang Liu ◽  
Ge Zhang

In the protecting inert gas, Aluminum nanoparticles were successfully prepared by anodic arc discharge plasma method. The morphology, particle size, crystal microstructure and specific surface area of the particles by this process were characterized via X-ray powder diffraction (XRD), Brunauer–Emmett–Teller(BET) adsorption equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). The experimental results indicate that the crystal structure of the samples is face centered cubic (fcc) structure as same as the bulk materials, the particle size distribution ranging from 20 to 70 nm, with an average particle size about 44 nm obtained by TEM and confirmed by XRD and BET results. The specific surface area is 41 m2/g, the nanopowders distributed uniformly in spherical chain shapes with uniform size and monodisperse particles.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5486
Author(s):  
Shuangping Yang ◽  
Tiantian Zhang ◽  
Shouman Liu ◽  
Haixing Sun

The effect of microwave activation on the properties of oxidation roasting for molybdenite was investigated under the protection of inert gas, and the specific surface area, the oxidation properties, lattice constant, microstructure, and shape of molybdenite were analyzed and characterized by a laser particle size analyzer, thermogravimetry (TG), X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The results show that microwave activation could effectively reduce the residual amount of sulfur in the molybdenum calcine and decrease the average particle size of molybdenite while increasing the specific surface area of molybdenite. On increasing the microwave activation power, the crystal cell volume and grain size of MoS2 reduced, and the microstrain increased slightly. At the same time, the surface shape of molybdenite became looser, but the layered structure is not changed. In addition, the oxidation property changed significantly; microwave activation promoted the oxidation reaction of molybdenite above 538 °C, and the rate of weight loss increased from 6.177% to 7.718% at 620 °C.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Mingru Zhou ◽  
Zhiqiang Wei ◽  
Hongxia Qiao ◽  
Lin Zhu ◽  
Hua Yang ◽  
...  

In the protecting inert gas, silver nanoparticles were successfully prepared by confined arc plasma method. The particle size, microstructure, and morphology of the particles by this process were characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). TheN2absorption-desorption isotherms of the samples were measured by using the static volumetric absorption analyzer, the pore structure of the sample was calculated by Barrett-Joyner-Halenda (BJH) academic model, and the specific surface area was calculated from Brunauer-Emmett-Teller (BET) adsorption equation. The experiment results indicate that the crystal structure of the samples is face-centered cubic (FCC) structure the same as the bulk materials, the particle size distribution ranging from 5 to 65 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results. The specific surface area is 23.81 m2/g, pore volumes are 0.09 cm3/g, and average pore diameter is 18.7 nm.


2011 ◽  
Vol 410 ◽  
pp. 228-231
Author(s):  
Wimonlak Sutapun ◽  
Yupaporn Ruksakulpiwat ◽  
Nitinat Suppakarn ◽  
Rachasit Jeencham ◽  
Ajcharaporn Aontee

In this work, PCC was prepared from chicken eggshell powder (ESP) by dissolving 100 g ESP in 1 M hydrochloric acid at room temperature. Under vigorous stirring, PCC was precipitated from the ESP-dissolved solution using 1 M sodium carbonate solution. The dried PESP (precipitated eggshell powder) was then characterized by particle size analyzer, X-ray diffractometer, Brunauer-Emmett-Teller surface analyzer and thermogravimetric analyzer. The particle shape of the PESP was revealed using scanning electron microscope. It was found that PESP was a binary mixer of calcite and vaterite. The particles were in cubic and spherical shape. In addition, PESP had a volume average diameter of 8.16 μm, D[V, 0.5] of 7.22 μm, D[V,0.9] of 16.57 μm, and the specific surface area of 4.38 m2/g. The average particle size was lower than and the specific surface area was higher than that of ESP. The decomposition process of PESP occured in a single step between 610 and 770 °C, with 44.43% weight loss.


Sign in / Sign up

Export Citation Format

Share Document