Development of Heterostructured Ferroelectric SrZrO3/CdS Photocatalysts with Enhanced Surface Area and Photocatalytic Activity

2020 ◽  
Vol 20 (6) ◽  
pp. 3770-3779 ◽  
Author(s):  
Umar Farooq ◽  
Farheen Naz ◽  
Ruby Phul ◽  
Nayeem Ahmad Pandit ◽  
Sapan Kumar Jain ◽  
...  

This paper reports the attempt to develop an efficient heterostructure photocatalyst by employing SrZrO3 as ferroelectric substrate with deposited nanostructured CdS semiconductor on the surface. Primarily bare SrZrO3 and CdS nanoparticles were synthesized by using polymeric citrate precursor and co-precipitation routes, respectively. The chemical deposition technique was used to develop the CdS over the surface of the pre-synthesized SrZrO3 nanoparticles. The synthesized bare nanoparticles and their heterostructure were characterized by XRD which shows the formation of orthorhombic and face centred cubic (FCC) phases of SrZrO3 and CdS, respectively. TEM was used to estimate the morphology and particle size of as-synthesized nanoparticles, which shows the average particle size of 14, 24 and 25 nm for SrZrO3, CdS and SrZrO3/CdS, respectively. The BET surface area of SrZrO3, CdS and SrZrO3/CdS samples was found to be 299, 304 and 312 m2/g respectively. Methylene blue was used as model pollutant to determine the photocatalytic activity of the synthesized nanomaterials. The heterostructure shows an enhanced activity as compared to bare nanoparticles. Dielectric constant and dielectric loss of the nanoparticles was investigated as a function of frequency at room temperature and as a function of temperature at 500 kHz. The room temperature dielectric constant for SrZrO3, CdS and SrZrO3/CdS was found to be 13.2, 17.8 and 25.5 respectively at 100 kHz.

2016 ◽  
Vol 680 ◽  
pp. 198-202
Author(s):  
Chao Wang ◽  
Si Qin Zhao ◽  
S. Asuha

In this paper, a series of mesoporous TiO2 photocatalyst were prepared by hydrothermal method using block copolymer P123 as template and Ti (OBu)4 as titanium source. The microstructure and spectroscopy performance of the prepared TiO2 were characterized by means of XRD, SEM, TEM, BET, and BJH analysis, and the photocatalytic activity of mesoporous TiO2 were examined by measuring the photodegradation of methyl orange , then discussed the best prepared conditions of mesoporous TiO2 photocatalyst. The results showed that the products were all anatase mesoporous TiO2 nanopowder, the average particle size is about 7nm and all have the Langmuir type IV pore structure. The best prepared condition: hydrothermal temperature is 160°C, hydrothermal time is 24h, mesoporous TiO2 photocatalyst has the BET surface area of 146m2/g , it’s photocatalytic degradation rate is 97.07% in an hour.


2018 ◽  
Vol 34 (4) ◽  
pp. 1817-1823
Author(s):  
I. Nengah Simpen ◽  
I. Made Sutha Negara ◽  
Ni Made Puspawati

Heterogeneous nanocatalyst of biohydroxyapatite-lithium (HA-Li) has been prepared through modification of HA extracted from bovine bone waste with Li at various calcination temperatures (400-700oC). Characterizations of the heterogeneous catalysts were including surface acidity-basicity, functional groups, BET surface area, particle size, and surface morphology. Optimization of catalyst ratios (1-7%) with the best characterization was applied for converting Malapari seed oil (Milletia pinnata L.) to biodiesel. The characterization results showed that HA-Li catalyst calcinated at 600oChad the highest surface basicity and Lewis acid sites revealing specific functional group of O-Li at wavenumber of 1612.49 cm-1. BET surface area of HA-Li catalyst decreased with increased average particle size. SEM analysis suggested that morfology of catalysts formed stack of agglomerates. The highest yield of biodiesel obtained on a catalyst ratio of 5% was 88.16%. GC-MS analysis showed 10 peaks, and 5 of the peaks exhibiting the highest percentage area were identified as methyl oleic, methyl palmitic, methyl erusic, methyl stearic, and methyl linoleic.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1511
Author(s):  
Martina Novotná ◽  
Petr Knotek ◽  
Tomáš Hanzlíček ◽  
Petr Kutálek ◽  
Ivana Perná ◽  
...  

This article studies the photocatalytic activity of three types of industrially produced TiO2 powder (P25, CG100 and CG300) incorporated into a parent geopolymer matrix, and their pure counterparts, based on the decomposition of Rhodamine B dye. Rhodamine B dye is applied as a model substance because it is frequently used in the textile industry and thus may be present in the wastewater. The average particle size, specific surface area and mineralogical composition of TiO2 powders have been determined. The geopolymer matrix works well as a supporting material for the CG100 and P25 pure types of TiO2 powder as these input materials have better properties such as a higher average particle size, lower specific surface area, mineralogicalcomposition, etc., than the CG300 TiO2 powder. These properties (or their combination) affect the photocatalytic activity of the resulting materials, which may thus become advanced composites with an additional purifying ability, e.g., materials that can be used for wastewater treatment or air purification.


2008 ◽  
Vol 22 (16) ◽  
pp. 2537-2544 ◽  
Author(s):  
PREETI MATHUR ◽  
ATUL THAKUR ◽  
M. SINGH

In the present work, comparative study of the dielectric behavior of Mn 0.4 Zn 0.6 Fe 2 O 4 ferrite synthesized with and without H 2 O 2 (hydrogen peroxide) has been presented. The dc resistivity has been improved by the citrate precursor method as compared to the ceramic method, and it is further improved by the addition of H 2 O 2, which acts as a strong oxidizing agent. We have shown by means of X-ray diffraction that the resulting ferrite is made up of nanocrystallites and the average size of these nanocrystallites–calculated by Scherrer's formula–depends on the polarizer. The average particle size was found to be ~70 nm with H 2 O 2 and ~88 nm without H 2 O 2. The particle size is further confirmed by scanning electron microscopy. Both the results are found to be in good agreement. The decrease in dielectric constant and dielectric loss factor by addition of oxidizing agent is justified by inverse proportionality between the resistivity and dielectric constant. Possible mechanisms contributing to these processes have been discussed.


Author(s):  
Hieр Nguyen Tien

The kinetics of metallic cobalt nanopowder synthesizing by hydrogen reduction from Co(OH)2 nanopowder under isothermal conditions were studied. Co(OH)2 nanopowder was prepared in advance by chemical deposition from aqueous solutions of Co(NO3)2 cobalt nitrate (10 wt.%) and NaOH alkali (10 wt.%) at room temperature, pH = 9 under continuous stirring. The hydrogen reduction of Co(OH)2 nanopowder under isothermal conditions was carried out in a tube furnace in the temperature range from 270 to 310 °C. The crystal structure and composition of powders was studied by X-ray phase analysis. The specific surface area of samples was measured using the BET method by low-temperature nitrogen adsorption. The average particle size of powders was determined by the measured specific surface area. Particles size characteristics and morphology were investigated by transmission and scanning electron microscopes. Kinetic parameters of Co(OH)2 hydrogen reduction under isothermal conditions were calculated using the Gray–Weddington model and Arrhenius equation. It was found that the rate constant of reduction at t = 310 °C is approximately 1.93 times higher than at 270 °C, so the process accelerates by 1.58 times for 40 min of reduction. The activation energy of cobalt nanopowder synthesizing from Co(OH)2 by hydrogen reduction is ~40 kJ/mol, which indicates a mixed reaction mode. It was shown that cobalt nanoparticles obtained by the hydrogen reduction of its hydroxide at 280 °C are aggregates of equiaxed particles up to 100 nm in size where individual particles are connected to several neighboring particles by contact isthmuses.


2020 ◽  
Vol 32 (10) ◽  
pp. 2489-2494
Author(s):  
S.S. Sagar ◽  
R.P. Chavan

The present study deals with hydrothermal synthesis of SiO2 composite MgMnO3 catalyst. The obtained polycrystalline product was analyzed by using physical investigative techniques including XRD, SEM, EDAX, TEM, SAED and BET surface area. The product corresponded to average particle size of 100 nm by TEM images. The BET surface area was found 234.38 cm2/g for SiO2 composite MgMnO3 catalyst which indicates a good catalytic property. The synthesized catalyst was applied for the synthesis of 1H-pyrazolo[1,2-b]-phthalazine-5,10-dione in presence of ethanol as a solvent at 80 ºC. The current procedure and catalyst offers the gains of clean reaction, short reaction time, high yield, easy purification and financial availability of the catalyst.


2016 ◽  
Vol 7 ◽  
pp. 721-732 ◽  
Author(s):  
Jacek Wojnarowicz ◽  
Roman Mukhovskyi ◽  
Elzbieta Pietrzykowska ◽  
Sylwia Kusnieruk ◽  
Jan Mizeracki ◽  
...  

Mn-doped zinc oxide nanoparticles were prepared by using the microwave solvothermal synthesis (MSS) technique. The nanoparticles were produced from a solution of zinc acetate dihydrate and manganese(II) acetate tetrahydrate using ethylene glycol as solvent. The content of Mn2+ in Zn1− x Mn x O ranged from 1 to 25 mol %. The following properties of the nanostructures were investigated: skeleton density, specific surface area (SSA), phase purity (XRD), lattice parameters, dopant content, average particle size, crystallite size distribution, morphology. The average particle size of Zn1− x Mn x O was determined using Scherrer’s formula, the Nanopowder XRD Processor Demo web application and by converting the specific surface area results. X-ray diffraction of synthesized samples shows a single-phase wurtzite crystal structure of ZnO without any indication of additional phases. Spherical Zn1− x Mn x O particles were obtained with monocrystalline structure and average particle sizes from 17 to 30 nm depending on the content of dopant. SEM images showed an impact of the dopant concentration on the morphology of the nanoparticles.


2014 ◽  
Vol 989-994 ◽  
pp. 611-614
Author(s):  
Ling Li ◽  
Wen Ming Zhang ◽  
Hua Yan Zhang ◽  
Zi Hao Xu ◽  
Sen Wang ◽  
...  

Vanadium/iron co-doped nanoTiO2 transparent hydrosol with an average particle size of 3.8 nm was synthesized by a novel complexation-controlled hydrolysis method at room temperature and atmospheric pressure by using TiCl4, ferric nitrate, ammonium metavanadate, etc. as raw materials. The composition, phase structure, particle size, absorbance spectrum, and photocatalytic performance of samples were characterized by XRD, EDS, nanolaser particle size analyzer, and UV-Vis spectrophotometer. The photocatalytic properties of V/Fe doped TiO2 were studied through degrading acid 3R dye, and the results show that when the content of V/Fe was 0.5%, the degradation rate reached more than 96% under irridation for 60 min.


2010 ◽  
Vol 92 ◽  
pp. 163-169
Author(s):  
Hong Xia Qiao ◽  
Zhi Qiang Wei ◽  
Ming Ru Zhou ◽  
Zhong Mao He

Copper nanoparticles were successfully prepared in large scales by means of anodic arc discharging plasma method in inert atmosphere. The particle size, specific surface area, crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), BET equation, transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). The experiment results indicate that the crystal structure of the samples is fcc structure as same as that of the bulk materials. The specific surface area is is 11 m2/g, with the particle size distribution ranging from 30 to 90 nm, the average particle size about 67nm obtained from TEM and confirmed from XRD and BET results. The nanoparticles have uniform size, higher purity, narrow size distribution and spherical shape can be prepared by this convenient and effective method.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Dinesh Patidar ◽  
Anusaiya Kaswan ◽  
N. S. Saxena ◽  
Kananbala Sharma

Monodispersed ZnO nanoparticles have been synthesised in ethylene glycol medium using zinc acetate and sodium hydroxide at room temperature through ultrasonic treatment. The monodispersed ZnO nanoparticles were characterized by XRD, TEM, SEM, and optical spectroscopy. The results indicate that ZnO shows the hexagonal wurtzite structure having 8 nm average particle size with the band gap of 3.93 eV. ZnO nanoparticles blended with P3HT show the improvement in the interchains and intrachains ordering as compared to pure P3HT. The power conversion efficiency of P3HT/ZnO solar cell is found to be 0.88%, which is comparable with the result obtained by other researchers.


Sign in / Sign up

Export Citation Format

Share Document