scholarly journals Modification of FA0.85MA0.15Pb(I0.85Br0.15)3 Films by NH2-POSS

Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1544
Author(s):  
Yangyang Zhang ◽  
Na Liu ◽  
Haipeng Xie ◽  
Jia Liu ◽  
Pan Yuan ◽  
...  

The surface composition and morphology of FA0.85MA0.15Pb(I0.85Br0.15)3 films fabricated by the spin-coating method with different concentrations of NH2-POSS were investigated with atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), angle-resolved X-ray photoelectron spectroscopy (AR-XPS), and Fourier transform infrared spectroscopy (FTIR). It was found that the surface composition of the FA0.85MA0.15Pb(I0.85Br0.15)3 films was changed regularly through the interaction between NH2-POSS and the perovskite film. The corresponding surface morphological changes were also observed. When the concentration of NH2-POSS exceeded 10 mg/mL, a lot of cracks on the surface of the perovskite film were observed and the surface morphology was damaged. The surface composition and its distribution can be adjusted by changing the concentration of NH2-POSS and the proper concentration of NH2-POSS can substantially improve the quality of perovskite film.

2018 ◽  
Vol 51 (2) ◽  
pp. 246-253
Author(s):  
Dev Raj Chopra ◽  
Justin Seth Pearson ◽  
Darius Durant ◽  
Ritesh Bhakta ◽  
Anil R. Chourasia

2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


2003 ◽  
Vol 82 (12) ◽  
pp. 1830-1832 ◽  
Author(s):  
H. Dumont ◽  
D. Rutzinger ◽  
C. Vincent ◽  
J. Dazord ◽  
Y. Monteil ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 101 ◽  
Author(s):  
Alejandra Rendón-Patiño ◽  
Jinan Niu ◽  
Antonio Doménech-Carbó ◽  
Hermenegildo García ◽  
Ana Primo

Polystyrene as a thin film on arbitrary substrates or pellets form defective graphene/graphitic films or powders that can be dispersed in water and organic solvents. The materials were characterized by visible absorption, Raman and X-ray photoelectron spectroscopy, electron and atomic force microscopy, and electrochemistry. Raman spectra of these materials showed the presence of the expected 2D, G, and D peaks at 2750, 1590, and 1350 cm−1, respectively. The relative intensity of the G versus the D peak was taken as a quantitative indicator of the density of defects in the G layer.


Sign in / Sign up

Export Citation Format

Share Document