scholarly journals π-Hole Tetrel Bonds—Lewis Acid Properties of Metallylenes

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 112
Author(s):  
Sławomir J. Grabowski

The MP2/aug-cc-pVTZ calculations were performed on the dihalometallylenes to indicate their Lewis acid and Lewis base sites. The results of the Cambridge Structural Database search show corresponding and related crystal structures where the tetrel center often possesses the configuration of a trigonal bipyramid or octahedron. The calculations were also carried out on dimers of dichlorogermylene and dibromogermylene and on complexes of these germylenes with one and two 1,4-dioxide molecules. The Ge⋯Cl, Ge⋯Br, and Ge⋯O interactions are analyzed. The Ge⋯O interactions in the above mentioned germylene complexes may be classified as the π-hole tetrel bonds. The MP2 calculations are supported by the results of the Quantum Theory of Atoms in Molecules (QTAIM) and the Natural Bond Orbital (NBO) approaches.

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5175
Author(s):  
Sławomir J. Grabowski

CCSD(T)/aug-cc-pVTZ//ωB97XD/aug-cc-pVTZ calculations were performed for halogen-bonded complexes. Here, the molecular hydrogen, cyclopropane, cyclobutane and cyclopentane act as Lewis base units that interact through the electrons of the H–H or C–C σ-bond. The FCCH, ClCCH, BrCCH and ICCH species, as well as the F2, Cl2, Br2 and I2 molecular halogens, act as Lewis acid units in these complexes, interacting through the σ-hole localised at the halogen centre. The Quantum Theory of Atoms in Molecules (QTAIM), the Natural Bond Orbital (NBO) and the Energy Decomposition Analysis (EDA) approaches were applied to analyse these aforementioned complexes. These complexes may be classified as linked by A–X···σ halogen bonds, where A = C, X (halogen). However, distinct properties of these halogen bonds are observed that depend partly on the kind of electron donor: dihydrogen, cyclopropane, or another cycloalkane. Examples of similar interactions that occur in crystals are presented; Cambridge Structural Database (CSD) searches were carried out to find species linked by the A–X···σ halogen bonds.


Author(s):  
Bürgehan Terlan ◽  
Lev Akselrud ◽  
Alexey I. Baranov ◽  
Horst Borrmann ◽  
Yuri Grin

Binary vanadium borides are suitable model systems for a systematic analysis of the transferability concept in intermetallic compounds due to chemical intergrowth in their crystal structures. In order to underline this structural relationship, topological properties of the electron density in VB, V3B4 and VB2 reconstructed from high-resolution single-crystal X-ray diffraction data as well as derived from quantum chemical calculations, are analysed in terms of Bader's Quantum Theory of Atoms in Molecules [Bader (1990). Atoms in Molecules: A Quantum Theory, 1st ed. Oxford: Clarendon Press]. The compounds VB, V3B4 and VB2 are characterized by a charge transfer from the metal to boron together with two predominant atomic interactions, the shared covalent B—B interactions and the polar covalent B—M interactions. The resembling features of the crystal structures are well reflected by the respective B—B interatomic distances as well as by ρ(r) values at the B—B bond critical points. The latter decrease with an increase in the corresponding interatomic distances. The B—B bonds show transferable electron density properties at bond critical points depending on the respective bond distances.


2019 ◽  
Vol 64 (4) ◽  
pp. 472-477 ◽  
Author(s):  
Mina Iranpour ◽  
Reza Fazaeli ◽  
Mirabdolah Seyed Sadjadi ◽  
Mohammad Yousefi

Molecules ◽  
2018 ◽  
Vol 23 (7) ◽  
pp. 1770 ◽  
Author(s):  
Antonio Bauzá ◽  
Antonio Frontera

In this manuscript, we combined DFT calculations (PBE0-D3/def2-TZVP level of theory) and a Cambridge Structural Database (CSD) survey to evaluate the ability of perchlorinated cyclopenta- and cyclohexatetrelanes in establishing tetrel bonding interactions. For this purpose, we used Tr5Cl10 and Tr6Cl12 (Tr = Si and Ge) and HCN, HF, OH− and Cl− as electron donor entities. Furthermore, we performed an Atoms in Molecules (AIM) analysis to further describe and characterize the interactions studied herein. A survey of crystal structures in the CSD reveals that close contacts between Si and lone-pair-possessing atoms are quite common and oriented along the extension of the covalent bond formed by the silicon with the halogen atom.


2013 ◽  
Vol 52 (12) ◽  
pp. 6806-6819 ◽  
Author(s):  
Maria V. Ivanova ◽  
Tobias Köchner ◽  
Hélène P. A. Mercier ◽  
Gary J. Schrobilgen

2020 ◽  
Vol 6 (4) ◽  
pp. 60
Author(s):  
Antonio Frontera

The σ- and π-hole interactions are used to define attractive forces involving elements of groups 12–18 of the periodic table acting as Lewis acids and any electron rich site (Lewis base, anion, and π-system). When the electrophilic atom belongs to group 14, the resulting interaction is termed a tetrel bond. In the first part of this feature paper, tetrel bonds formed in crystalline solids involving sp3-hybridized carbon atom are described and discussed by using selected structures retrieved from the Cambridge Structural Database. The interaction is characterized by a strong directionality (close to linearity) due to the small size of the σ-hole in the C-atom opposite the covalently bonded electron withdrawing group. The second part describes the utilization of two allotropic forms of carbon (C60 and carbon nanotubes) as supramolecular catalysts based on anion–π interactions (π-hole tetrel bonding). This part emphasizes that the π-hole, which is considerably more accessible by nucleophiles than the σ-hole, can be conveniently used in supramolecular catalysis.


ChemInform ◽  
2013 ◽  
Vol 44 (35) ◽  
pp. no-no
Author(s):  
Maria V. Ivanova ◽  
Tobias Koechner ◽  
Helene P. A. Mercier ◽  
Gary J. Schrobilgen

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6939
Author(s):  
Mohammad Aarabi ◽  
Samira Gholami ◽  
Sławomir J. Grabowski

MP2/aug-cc-pVTZ calculations were carried out on complexes wherein the proton or the lithium cation is located between π-electron systems, or between π-electron and σ-electron units. The acetylene or its fluorine and lithium derivatives act as the Lewis base π-electron species similarly to molecular hydrogen, which acts as the electron donor via its σ-electrons. These complexes may be classified as linked by π-H∙∙∙π/σ hydrogen bonds and π-Li∙∙∙π/σ lithium bonds. The properties of these interactions are discussed, and particularly the Lewis acid units are analyzed, because multi-center π-H or π-Li covalent bonds may occur in these systems. Various theoretical approaches were applied here to analyze the above-mentioned interactions—the Quantum Theory of Atoms in Molecules (QTAIM), the Symmetry-Adapted Perturbation Theory (SAPT) and the Non-Covalent Interaction (NCI) method.


Sign in / Sign up

Export Citation Format

Share Document