scholarly journals Tetrel Bonding Interactions Involving Carbon at Work: Recent Advances in Crystal Engineering and Catalysis

2020 ◽  
Vol 6 (4) ◽  
pp. 60
Author(s):  
Antonio Frontera

The σ- and π-hole interactions are used to define attractive forces involving elements of groups 12–18 of the periodic table acting as Lewis acids and any electron rich site (Lewis base, anion, and π-system). When the electrophilic atom belongs to group 14, the resulting interaction is termed a tetrel bond. In the first part of this feature paper, tetrel bonds formed in crystalline solids involving sp3-hybridized carbon atom are described and discussed by using selected structures retrieved from the Cambridge Structural Database. The interaction is characterized by a strong directionality (close to linearity) due to the small size of the σ-hole in the C-atom opposite the covalently bonded electron withdrawing group. The second part describes the utilization of two allotropic forms of carbon (C60 and carbon nanotubes) as supramolecular catalysts based on anion–π interactions (π-hole tetrel bonding). This part emphasizes that the π-hole, which is considerably more accessible by nucleophiles than the σ-hole, can be conveniently used in supramolecular catalysis.

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 112
Author(s):  
Sławomir J. Grabowski

The MP2/aug-cc-pVTZ calculations were performed on the dihalometallylenes to indicate their Lewis acid and Lewis base sites. The results of the Cambridge Structural Database search show corresponding and related crystal structures where the tetrel center often possesses the configuration of a trigonal bipyramid or octahedron. The calculations were also carried out on dimers of dichlorogermylene and dibromogermylene and on complexes of these germylenes with one and two 1,4-dioxide molecules. The Ge⋯Cl, Ge⋯Br, and Ge⋯O interactions are analyzed. The Ge⋯O interactions in the above mentioned germylene complexes may be classified as the π-hole tetrel bonds. The MP2 calculations are supported by the results of the Quantum Theory of Atoms in Molecules (QTAIM) and the Natural Bond Orbital (NBO) approaches.


Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3419 ◽  
Author(s):  
Antonio Frontera

Noble gas (or aerogen) bond (NgB) can be outlined as the attractive interaction between an electron-rich atom or group of atoms and any element of Group-18 acting as an electron acceptor. The IUPAC already recommended systematic nomenclature for the interactions of groups 17 and 16 (halogen and chalcogen bonds, respectively). Investigations dealing with noncovalent interactions involving main group elements (acting as Lewis acids) have rapidly grown in recent years. They are becoming acting players in essential fields such as crystal engineering, supramolecular chemistry, and catalysis. For obvious reasons, the works devoted to the study of noncovalent Ng-bonding interactions are significantly less abundant than halogen, chalcogen, pnictogen, and tetrel bonding. Nevertheless, in this short review, relevant theoretical and experimental investigations on noncovalent interactions involving Xenon are emphasized. Several theoretical works have described the physical nature of NgB and their interplay with other noncovalent interactions, which are discussed herein. Moreover, exploring the Cambridge Structural Database (CSD) and Inorganic Crystal Structure Database (ICSD), it is demonstrated that NgB interactions are crucial in governing the X-ray packing of xenon derivatives. Concretely, special attention is given to xenon fluorides and xenon oxides, since they exhibit a strong tendency to establish NgBs.


Author(s):  
Sławomir J. Grabowski

MP2/aug-cc-pVTZ calculations were carried out for the ZFH3-B complexes (Z = C, Si, Ge, Sn and Pb; B = C2H2, C2H4, C6H6 and C5H5-; relativistic effects were taken into account for Ge, Sn and Pb elements). These calculations are supported by other approaches; the decomposition of the energy of interaction, Quantum Theory of Atoms in Molecules (QTAIM) and Natural Bond Orbital (NBO) method. The results show that tetrel bonds with π-electrons as Lewis bases are classified as Z…C links between single centers (C is an atom of the π-electron system) or as Z…π interactions where F-Z bond is directed to the mid-point (or nearly so) of the CC bond of the Lewis base. The analogues systems with Z…C/π interactions were found in the Cambridge Structural Database (CSD). It was found that the strength of interaction increases with the increase of the atomic number of the tetrel element and that for heavier tetrel elements the ZFH3 tetrahedral structure is more deformed towards the structure with the planar ZH3 fragment. The results of calculations show that the tetrel bond is sometimes accompanied by the Z-H…C hydrogen bond or even sometimes the ZFH3-B complexes are linked only by the hydrogen bond interaction.


2007 ◽  
Vol 9 (19) ◽  
pp. 3801-3804 ◽  
Author(s):  
Scott E. Denmark ◽  
William R. Collins
Keyword(s):  

2002 ◽  
Vol 124 (45) ◽  
pp. 13405-13407 ◽  
Author(s):  
Scott E. Denmark ◽  
Thomas Wynn ◽  
Gregory L. Beutner

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2703 ◽  
Author(s):  
Sławomir J. Grabowski

The second-order Møller–Plesset perturbation theory calculations with the aug-cc-pVTZ basis set were performed on complexes of triel species: BCl3, BH3, AlCl3, and AlH3 acting as Lewis acids through the B or Al centre with Lewis base units: NCH, N2, NH3, and Cl− anion. These complexes are linked by triel bonds: B/Al⋅⋅⋅N or B/Al⋅⋅⋅Cl. The Quantum Theory of ´Atoms in Molecules´ approach, Natural Bond Orbital method, and the decomposition of energy of interaction were applied to characterise the latter links. The majority of complexes are connected through strong interactions possessing features of covalent bonds and characterised by short intermolecular distances, often below 2 Å. The BCl3⋅⋅⋅N2 complex is linked by a weak interaction corresponding to the B⋅⋅⋅N distance of ~3 Å. For the BCl3⋅⋅⋅NCH complex, two configurations corresponding to local energetic minima are observed, one characterised by a short B⋅⋅⋅N distance and a strong interaction and another one characterised by a longer B⋅⋅⋅N distance and a weak triel bond. The tetrahedral triel structure is observed for complexes linked by strong triel bonds, while, for complexes connected by weak interactions, the structure is close to the trigonal pyramid, particularly observed for the BCl3⋅⋅⋅N2 complex.


Molecules ◽  
2018 ◽  
Vol 24 (1) ◽  
pp. 101 ◽  
Author(s):  
Yanmei Wen ◽  
Chunmei Deng ◽  
Jianying Xie ◽  
Xinhuang Kang

Diboron reagents have been traditionally regarded as “Lewis acids”, which can react with simple Lewis base to create a significant nucleophilic character in one of boryl moieties. In particular, bis(pinacolato)diboron (B2pin2) reacts with simple Lewis bases, such as N-heterocyclic carbenes (NHCs), phosphines and alkoxides. This review focuses on the application of trivalent nucleophilic boryl synthon in the selective preparation of organoboron compounds, mainly through metal-free catalytic diboration and the β-boration reactions of alkynes and alkenes.


1978 ◽  
Vol 33 (12) ◽  
pp. 1393-1397 ◽  
Author(s):  
R. D. Fischer ◽  
E. Klähne ◽  
J. Kopf

Abstract The first two examples of a novel series of organo-actinide complexes, [Cp3UXL] (Cp = η5 -C5H5, X = halide or pseudohalide anion, L = uncharged Lewis base), are described. The X-ray structure analysis of the system with X = NCS and L = CH3CN confirms an almost linear alignment (H3)CCNUNCS along with the coplanarity of the three Cp ring normals. The remarkable Lewis acidity of certain Cp3UX-compounds appears to be essential for the formation of oligomeric species [Cp3UX]∞ as well as for specific reactions of monomeric CP3UX.


Sign in / Sign up

Export Citation Format

Share Document