scholarly journals The Importance of CH···X (X = O, π) Interaction of a New Mixed Ligand Cu(II) Coordination Polymer: Structure, Hirshfeld Surface and Theoretical Studies

Crystals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 455 ◽  
Author(s):  
Saikat Seth

In this study, a new equimolar (1:1:1) mixed ligand Cu(II) polymer, [Cu(IDA)(ImP)]n (1) with iminodiacetato (IDA) and imidazo[1,2-a]-pyridine (ImP) was synthesized and characterized by single crystal X-ray diffraction analysis. X-ray crystallography reveals that compound (1) consists of polymeric zigzag chain along [010] the carboxylate carbonyl oxygen atom by two-fold symmetry screw axis. The solid-state structure is stabilized through C–H···O hydrogen bonds and C–H···π interactions that lead the molecules to generate two-dimensional supramolecular assemblies. The intricate combinations of hydrogen bonds and C–H···π interactions are fully described along with computational studies. A thorough analysis of Hirshfeld surface and fingerprint plots elegantly quantify the interactions involved within the structure. The binding energies associated with the noncovalent interactions observed in the crystal structure and the interplay between them were calculated using theoretical DFT calculations. Weak noncovalent interactions were analyzed and characterized using Bader’s theory of ‘‘atoms-in-molecules’’ (AIM). Finally, the solid-state supramolecular assembly was characterized by the “Noncovalent Interaction” (NCI) plot index.

2021 ◽  
Vol 19 ◽  
Author(s):  
Kikuko Iida ◽  
Toyokazu Muto ◽  
Miyuki Kobayashi ◽  
Hiroaki Iitsuka ◽  
Kun Li ◽  
...  

Abstract: X-ray crystal and Hirshfeld surface analyses of 2-hydroxy-7-methoxy-3-(2,4,6-trimethylbenzoyl)naphthalene and its 2-methoxylated homologue show quantitatively and visually distinct molecular contacts in crystals and minute differences in the weak intermolecular interactions. The title compound has a helical tubular packing, where molecules are piled in a two-folded head-to-tail fashion. The homologue has a tight zigzag molecular string lined up behind each other via nonclassical intermolecular hydrogen bonds between the carbonyl oxygen atom and the hydrogen atom of the naphthalene ring. The dnorm index obtained from the Hirshfeld surface analysis quantitatively demonstrates stronger molecular contacts in the homologue, an ethereal compound, than in the title compound, an alcohol, which is consistent with the higher melting temperature of the former than the latter. Stabilization through the significantly weak intermolecular nonclassical hydrogen bonding interactions in the homologue surpasses the stability imparted by the intramolecular C=O…H–O classical hydrogen bonds in the title compound. The classical hydrogen bond places the six-membered ring in the concave of the title molecule. The hydroxy group opposingly disturbs the molecular aggregation of the title compound, as demonstrated by the distorted H…H interactions covering the molecular surface, owing to the rigid molecular conformation. The position of effective interactions predominate over the strength of the classical/nonclassical hydrogen bonds in the two compounds.


Author(s):  
Robert A. Toro ◽  
Analio Dugarte-Dugarte ◽  
Jacco van de Streek ◽  
José Antonio Henao ◽  
José Miguel Delgado ◽  
...  

The structure of racemic (RS)-trichlormethiazide [systematic name: (RS)-6-chloro-3-(dichloromethyl)-1,1-dioxo-3,4-dihydro-2H-1λ6,2,4-benzothiadiazine-7-sulfonamide], C8H8Cl3N3O4S2 (RS-TCMZ), a diuretic drug used in the treatment of oedema and hypertension, was determined from laboratory X-ray powder diffraction data using DASH [David et al. (2006). J. Appl. Cryst. 39, 910–915.], refined by the Rietveld method with TOPAS-Academic [Coelho (2018). J. Appl. Cryst. 51, 210–218], and optimized using DFT-D calculations. The extended structure consists of head-to-tail dimers connected by π–π interactions which, in turn, are connected by C—Cl...π interactions. They form chains propagating along [101], further connected by N—H...O hydrogen bonds to produce layers parallel to the ac plane that stack along the b-axis direction, connected by additional N—H...O hydrogen bonds. The Hirshfeld surface analysis indicates a major contribution of H...O and H...Cl interactions (32.2 and 21.7%, respectively). Energy framework calculations confirm the major contribution of electrostatic interactions (E elec) to the total energy (E tot). A comparison with the structure of S-TCMZ is also presented.


1992 ◽  
Vol 47 (7) ◽  
pp. 952-956
Author(s):  
P. Mikulcik ◽  
P. Bissinger ◽  
J. Riede ◽  
H. Schmidbaur

Ester cleavage of aspartame (L-α-aspartyl-L-phenylalanine methylester) (1), by equimolar quantities of thallium ethoxide is accompanied by intramolecular cyclisation to give thallium 3-benzyl-6-(carboxylatomethyl)-2,5-dioxopiperazine (2). The solid state structure of the crystalline product was determined by single-crystal X-ray diffraction analysis. The cations were found to form four short and four elongated contacts to seven oxygen atoms and one nitrogen atom of a total of six neighbouring 3-benzyl-6-(carboxylatomethyl)-2,5-dioxopiperazine anions. There are inter-anionic hydrogen bonds only between the imino groups and the carbonyl oxygen atoms (O3, O4), featuring a pattern similar to that found for cytosine-guanosine contacts in DNA.


2020 ◽  
Vol 16 ◽  
pp. 2954-2959
Author(s):  
Xinru Sheng ◽  
Errui Li ◽  
Feihe Huang

We report novel pseudorotaxanes based on the complexation between pillar[4]arene[1]quinone and 1,10-dibromodecane. The complexation is found to have a 1:1 host–guest complexation stoichiometry in chloroform but a 2:1 host–guest complexation stoichiometry in the solid state. From single crystal X-ray diffraction, the linear guest molecules thread into cyclic pillar[4]arene[1]quinone host molecules in the solid state, stabilized by CH∙∙∙π interactions and hydrogen bonds. The bromine atoms at the periphery of the guest molecule provide convenience for the further capping of the pseudorotaxanes to construct rotaxanes.


Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 323 ◽  
Author(s):  
Mahmoudi ◽  
Seth ◽  
Zubkov ◽  
López-Torres ◽  
Bacchi ◽  
...  

Herein, we describe the synthesis and single crystal X-ray diffraction characterization of several Pb(II) complexes using Schiff base hydrazido-based ligands and different counterions (NO3−, I– and ClO4). In the three complexes reported in this work, the lead(II) metal exhibits a high coordination number (n > 8) and thus it is apparently not involved in tetrel bonding interactions. Moreover, the aromatic ligands participate in noncovalent interactions that play an important role in the formation of several supramolecular assemblies in the solid state of the three Pb(II) complexes. These assemblies have been analyzed by means of Hirshfeld surface analysis and DFT calculations.


2020 ◽  
Author(s):  
Xinru Sheng ◽  
Errui Li ◽  
Feihe Huang

We report novel pseudorotaxanes based on the complexation between a pillar[4]arene[1]quinone and 1,10-dibromodecane. The complexation is found to have a 1:1 host–guest complexation stoichiometry in chloroform but a 2:1 host–guest complexation stoichiometry in the solid state. From single crystal X-ray diffraction, the linear guest molecules thread into cyclic pillar[4]arene[1]quinone host molecules in the solid state, stabilized by CH∙∙∙π interactions and hydrogen bonds.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Shouvik Chattopadhyay ◽  
Tanmoy Basak ◽  
Antonio Frontera

Two mononuclear iron(III) complexes, [FeL1Cl]∙CH3CN (1) and [FeL2(N3)] (2) {H2L1= N,N′-bis(5-chlorosalicylidene)diethylenetriamine and H2L2= N,N′-bis(5-bromosalicylidene)diethylenetriamine}, have been synthesized and characterized by X-ray crystallographic studies. In the solid state, there are strong...


2011 ◽  
Vol 396-398 ◽  
pp. 2338-2341
Author(s):  
Xing Chuan Wei ◽  
Zhi Li Liu ◽  
Kun Zhang ◽  
Zhi Yun Du ◽  
Xi Zheng

In this paper, (2E,6E)-2,6-Bis(2,3,4-tri-methoxy -benzylidene)cyclohexanone (omitted as tmbcho) (1) was obtained by the reaction of acetic acid, tetrahydrofuran, cyclohexanone and 2,3,4-tri-methoxy-benzaldehyde. Three non-classic hydrogen bonds were observed in the compound. X-ray crystallography shows that the crystal structure is stabilized by intermolecular C-H•••π interactions and it contains plenty of conjugated double bonds. The title compound was characterized by UV-vis and fluorescent spectral studies.


2016 ◽  
Vol 72 (8) ◽  
pp. 1121-1125
Author(s):  
Lígia R. Gomes ◽  
John Nicolson Low ◽  
André Fonseca ◽  
Maria João Matos ◽  
Fernanda Borges

The title coumarin derivative, C20H14N2O3, displays intramolecular N—H...O and weak C—H...O hydrogen bonds, which probably contribute to the approximate planarity of the molecule [dihedral angle between the coumarin and quinoline ring systems = 6.08 (6)°]. The supramolecular structures feature C—H...O hydrogen bonds and π–π interactions, as confirmed by Hirshfeld surface analyses.


2013 ◽  
Vol 68 (2) ◽  
pp. 161-167 ◽  
Author(s):  
Muhammad Monim-ul-Mehbooba ◽  
Muhammad Ramzan ◽  
Tobias Rüffe ◽  
Heinrich Lang ◽  
Shafqat Naddem ◽  
...  

A cyanido-bridged Zn(II)-Ag(I) bimetallic coordination polymer, {[Zn(phen)2(H2O){Ag(CN)2}] [Ag(CN)2]·MeOH}n (1), was prepared using ZnCl2, 1,10-phenanthroline (phen) and K[Ag(CN)2] and characterized by IR spectroscopy, thermal analysis and X-ray crystallography. The crystal structure of 1 consists of dinuclear [Zn(phen)2(H2O){Ag(CN)2}]+ cations, [Ag(CN)2]- anions and a methanol molecule. The non-coordinated [Ag(CN)2]- anions are linked to the [Zn(phen)2(H2O){Ag(CN)2}]+ complex cations through argentophilic interactions leading to the formation of chains. The chains are connected by hydrogen bonds and π-π interactions to give a 3D network.


Sign in / Sign up

Export Citation Format

Share Document