scholarly journals DNA Barcoding of Penaeidae (Decapoda; Crustacea): Non-Distance-Based Species Delimitation of the Most Economically Important Shrimp Family

Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 460
Author(s):  
Jorge L. Ramirez ◽  
Luisa Simbine ◽  
Carla G. Marques ◽  
Eliana Zelada-Mázmela ◽  
Lorenzo E. Reyes-Flores ◽  
...  

The Penaeidae family includes some of the most economic and ecological important marine shrimp, comprising hundreds of species. Despite this importance and diversity, the taxonomic classification for penaeid shrimp has constantly been revised, and issues related to the species identification are common. In this study, we implemented DNA barcoding analyses in addition to single-gene species delimitation analyses in order to identify molecular operational taxonomy units (MOTUs) and to generate robust molecular information for penaeid shrimp based on the cytochrome oxidase subunit I (COI) mitochondrial gene. Our final data set includes COI sequences from 112 taxa distributed in 23 genera of penaeids. We employed the general mixed Yule coalescent (GMYC) model, the Poisson tree processes (PTP), and the Bayesian PTP model (bPTP) for MOTUs delimitation. Intraspecific and interspecific genetic distances were also calculated. Our findings evidenced a high level of hidden diversity, showing 143 MOTUs, with 27 nominal species not agreeing with the genetic delimitation obtained here. These data represent potential new species or highly structured populations, showing the importance of including a non-distance-based species delimitation approach in biodiversity studies. The results raised by this study shed light on the Penaeidae biodiversity, addressing important issues about taxonomy and mislabeling in databases and contributing to a better comprehension of the group, which can certainly help management policies for shrimp fishery activity in addition to conservation programs.

2006 ◽  
Vol 37 (4) ◽  
pp. 467-479 ◽  
Author(s):  
Gregor Kölsch ◽  
Bo Vest Pedersen ◽  
Olof Biström

AbstractThe genus Macroplea Samouelle, 1819 is a group of highly specialized aquatic leaf beetles occurring in the Palaearctic. Since the members of this genus are morphologically very similar, we addressed the question of species identification and delimitation by analysing the second half of the mitochondrial gene coding for the cytochrome oxidase I (COI) subunit. Species limits are inferred from the multimodal frequency distribution of genetic distances between specimens: low genetic distances within a species are clearly set apart from distances between species. The species status of the hitherto controversial species M. japana (Jacoby, 1885) is confirmed. The pattern of nucleotide and amino acid substitutions is discussed in the light of functional domains of the COI molecule. Although the data are preliminary, the results provide new data on the distribution of the species. Together with the phylogenetic analysis they allow for a discussion of the phylogeography of the genus.


Author(s):  
Daniel Lukic ◽  
Jonas Eberle ◽  
Jana Thormann ◽  
Carolus Holzschuh ◽  
Dirk Ahrens

DNA-barcoding and DNA-based species delimitation are major tools in DNA taxonomy. Sampling has been a central debate in this context, because the geographical composition of samples affect the accuracy and performance of DNA-barcoding. Performance of complex DNA-based species delimitation is to be tested under simpler conditions in absence of geographic sampling bias. Here, we present an empirical data set sampled from a single locality in a Southeast-Asian biodiversity hotspot (Laos: Phou Pan mountain). We investigate the performance of various species delimitation approaches on a megadiverse assemblage of herbivore chafer beetles (Coleoptera: Scarabaeidae) to infer whether species delimitation suffers in the same way from exaggerate infraspecific variation despite the lack of geographic genetic variation that led to inconsistencies between entities from DNA-based and morphology-based species inference in previous studies. For this purpose, a 658 bp fragment of the mitochondrial cytochrome c oxidase subunit 1 (cox1) was analysed for a total of 186 individuals of 56 morphospecies. Tree based and distance based species delimitation methods were used. All approaches showed a rather limited match ratio (max. 77%) with morphospecies. PTP and TCS prevailingly over-splitted morphospecies, while 3% clustering and ABGD also lumped several species into one entity. ABGD revealed the highest congruence between molecular operational taxonomic units (MOTUs) and morphospecies. Disagreements between morphospecies and MOTUs were discussed in the context of historically acquired geographic genetic differentiation, incomplete lineage sorting, and hybridization. The study once again highlights how important morphology still is in order to correctly interpret the results of molecular species delimitation.


Zootaxa ◽  
2018 ◽  
Vol 4403 (2) ◽  
pp. 378 ◽  
Author(s):  
EUGENYI A. MAKARCHENKO ◽  
MARINA A. MAKARCHENKO ◽  
ALEXANDER A. SEMENCHENKO ◽  
DMITRY M. PALATOV

Illustrated descriptions of the adult male, pupa and fourth instar larva, as well as DNA barcoding results of Chaetocladius (Chaetocladius) elisabethae sp. nov. in comparison with closely related species of Chaetocladius s. str. from the Moscow Region are provided. A reference 658 bp barcode sequence from a fragment of the mitochondrial gene cytochrome oxidase I (COI) was used as a tool for species delimitation. Comparisons with corresponding regions of COI between C. (s. str.) elisabethae sp. nov. and other species of the subgenus produced K2P genetic distances of 0.11–0.16, values well associated with interspecific variation. The barcodes of the new species were identical to the Chaetocladius sp. 2ES in BOLD systems. Molecular data were also used for the reconstruction of the phylogenetic relationships within the subgenus Chaetocladius s. str. 


Zootaxa ◽  
2008 ◽  
Vol 1944 (1) ◽  
pp. 34-52 ◽  
Author(s):  
THIBAUD DECAËNS ◽  
RODOLPHE ROUGERIE

Two new species of Hemileucinae are described from the region of Muzo (Boyaca department) in the Eastern Cordillera of Colombia. Leucanella bonillensis, new species, is a small greyish species whose closest relatives are L. newmani (Lemaire) and L. acutissima (Walker). It can be distinguished from those two species by several subtle differences in wing pattern and coloration as well as a few characters of the male genitalia, which are overall very conserved within the genus. Cerodirphia zulemae, new species, belongs to the very uniform species-group of C. speciosa (Cramer), characterised by a pink ground colour and the presence of a “Y”-shaped discal mark on the forewing. Based on its male genitalia, the new species is related to C. brunnea (Draudt) and C. apunctata Dias & Lemaire. It may be distinguished from the former by its more vivid ground colour, but detailed examination of the male genitalia are necessary to differentiate it from C. apunctata. Colour pictures of the habitus of the new species and their relatives are provided, and their genital structures are figured as well, including both sexes for C. zulemae. We also provide additional support to these descriptions based on genetic data obtained in the context of a global DNA barcoding campaign recently initiated for saturniid moths. Both L. bonillensis and C. zulemae are unambiguously distinguished from closest relatives based on genetic distances (no intraspecific distances in either case; interspecific distance ranges 5.6–6.6% and 6.7–12.5%, respectively) and inference of phylogenetic hypotheses based on partial sequences of the COI mitochondrial gene. These results emphasize the potential of DNA barcoding to support taxonomic work in species-groups considered difficult to address through morphology.


Genome ◽  
2017 ◽  
Vol 60 (2) ◽  
pp. 169-182 ◽  
Author(s):  
Robert G. Young ◽  
Cathryn L. Abbott ◽  
Thomas W. Therriault ◽  
Sarah J. Adamowicz

DNA barcoding has been used successfully for identifying specimens belonging to marine planktonic groups. However, the ability to delineate species within taxonomically diverse and widely distributed marine groups, such as the Copepoda and Thecostraca, remains largely untested. We investigate whether a cytochrome c oxidase subunit I (COI-5P) global pairwise sequence divergence threshold exists between intraspecific and interspecific divergences in the copepods plus the thecostracans (barnacles and allies). Using publicly accessible sequence data, we applied a graphical method to determine an optimal threshold value. With these thresholds, and using a newly generated planktonic marine data set, we quantify the degree of concordance using a bidirectional analysis and discuss different analytical methods for sequence-based species delimitation (e.g., BIN, ABGD, jMOTU, UPARSE, Mothur, PTP, and GMYC). Our results support a COI-5P threshold between 2.1% and 2.6% p-distance across methods for these crustacean taxa, yielding molecular groupings largely concordant with traditional, morphologically defined species. The adoption of internal methods for clustering verification enables rapid biodiversity studies and the exploration of unknown faunas using DNA barcoding. The approaches taken here for concordance assessment also provide a more quantitative comparison of clustering results (as contrasted with “success/failure” of barcoding), and we recommend their further consideration for barcoding studies.


2018 ◽  
Author(s):  
Pável Matos-Maraví ◽  
Niklas Wahlberg ◽  
Alexandre Antonelli ◽  
Carla M. Penz

AbstractSpecies delimitation is at the core of biological sciences. During the last decade, molecular-based approaches have advanced the field by providing additional sources of evidence to classical, morphology-based taxonomy. However, taxonomy has not yet fully embraced molecular species delimitation beyond threshold-based, single-gene approaches, and taxonomic knowledge is not commonly integrated to multi-locus species delimitation models. Here we aim to bridge empirical data (taxonomic and genetic) with recently developed coalescent-based species delimitation approaches. We use the multispecies coalescent model as implemented in two Bayesian methods (DISSECT/STACEY and BP&P) to infer species hypotheses. In both cases, we account for phylogenetic uncertainty (by not using any guide tree) and taxonomic uncertainty (by measuring the impact of using or not a priori taxonomic assignment to specimens). We focus on an entire Neotropical tribe of butterflies, the Haeterini (Nymphalidae: Satyrinae). We contrast divergent taxonomic opinion—splitting, lumping and misclassifying species—in the light of different phenotypic classifications proposed to date. Our results provide a solid background for the recognition of 22 species. The synergistic approach presented here overcomes limitations in both traditional taxonomy (e.g. by recognizing cryptic species) and molecular-based methods (e.g. by recognizing structured populations, and not raise them to species). Our framework provides a step forward towards standardization and increasing reproducibility of species delimitations.


2014 ◽  
Vol 35 (2) ◽  
pp. 197-206 ◽  
Author(s):  
R.G. Bina Perl ◽  
Zoltán T. Nagy ◽  
Gontran Sonet ◽  
Frank Glaw ◽  
Katharina C. Wollenberg ◽  
...  

We provide a DNA barcoding survey of Malagasy amphibians, including 251 of the 292 nominal species known to date, by complementing previous data with 280 newly determined barcoding sequence fragments of the mitochondrial cytochrome oxidase subunit I (COI) gene. Amplification success for the newly determined sequences was highest (94%) with one set of universal COI primers (dgLCO1490-dgHCO2198) while other primer sets had distinctly lower success rates. By and large, we observed relatively high average interspecific genetic distances of 25-27% within the Mantellidae and Microhylidae, and genetic distances of 13-21% within the Hyperoliidae. Lower values of 6-7% were observed between some sister species in all families, with extreme lows of 0.2-0.3% between a few sister species pairs in microhylids and mantellids for which we postulate mitochondrial introgression or yet unsettled taxonomy. Within-species divergences were relatively high especially in mantellids where they averaged 5.3%, due to the inclusion of numerous deep conspecific lineages (by definition with high divergences to other specimens) in our study. Above this, the degree of polymorphism was difficult to establish owing to limited sampling per population in our assessment. Compared to a previous assessment from 2009 based on 16S rDNA sequences, we identify 14 additional undescribed candidate species and raise the maximum estimate of species in the island’s batrachofauna to well over 500.


Genetics ◽  
1998 ◽  
Vol 150 (1) ◽  
pp. 383-391 ◽  
Author(s):  
Hoang V Tang ◽  
Ruying Chang ◽  
Daryl R Pring

Abstract Defective nuclear-cytoplasmic interactions leading to aberrant microgametogenesis in sorghum carrying the IS1112C male-sterile cytoplasm occur very late in pollen maturation. Amelioration of this condition, the restoration of pollen viability, involves a novel two-gene gametophytic system, wherein genes designated Rf3 and Rf4 are required for viability of individual gametes. Rf3 is tightly linked to, or represents, a single gene that regulates a transcript processing activity that cleaves transcriptsof orf107, a chimeric mitochondrial open reading frame specific to IS1112C. The mitochondrial gene urf 209 is also subject to nucleus-specific enhanced transcript processing, 5′ to the gene, conferred by a single dominant gene designated Mmt1. Examinations of transcript patterns in F2 and two backcross populations indicated cosegregation of the augmented orf107 and urf209 processing activities in IS1112C. Several sorghum lines that do not restore fertility or confer orf107 transcript processing do exhibit urf209 transcript processing, indicating that the activities are distinguishable. We conclude that the nuclear gene(s) conferring enhanced orf107 and urf209 processing activities are tightly linked in IS1112C. Alternatively, the similarity in apparent regulatory action of the genes may indicate allelic differences wherein the IS1112C Rf3 allele may differ from alleles of maintainer lines by the capability to regulate both orf107 and urf209 processing activities.


Mammalia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Álvaro J. Benítez ◽  
Dina Ricardo-Caldera ◽  
María Atencia-Pineda ◽  
Jesús Ballesteros-Correa ◽  
Julio Chacón-Pacheco ◽  
...  

Abstract Bats are mammals of great ecological and medical importance, which have associations with different pathogenic microorganisms. DNA barcoding is a tool that can expedite species identification using short DNA sequences. In this study, we assess the DNA barcoding methodology in bats from the Colombian Northern region, specifically in the Córdoba department. Cytochrome oxidase subunit I (COI) gene sequences of nine bat species were typified, and their comparison with other Neotropic samples revealed that this marker is suitable for individual species identification, with ranges of intra-species variation from 0.1 to 0.9%. Bat species clusters are well supported and differentiated, showing average genetic distances ranging from 3% between Artibeus lituratus and Artibeus planirostris, up to 27% between Carollia castanea and Molossus molossus. C. castanea and Glossophaga soricina show geographical structuring in the Neotropic. The findings reported in this study confirm DNA barcoding usefulness for fast species identification of bats in the region.


Sign in / Sign up

Export Citation Format

Share Document