DNA barcoding Madagascar’s amphibian fauna

2014 ◽  
Vol 35 (2) ◽  
pp. 197-206 ◽  
Author(s):  
R.G. Bina Perl ◽  
Zoltán T. Nagy ◽  
Gontran Sonet ◽  
Frank Glaw ◽  
Katharina C. Wollenberg ◽  
...  

We provide a DNA barcoding survey of Malagasy amphibians, including 251 of the 292 nominal species known to date, by complementing previous data with 280 newly determined barcoding sequence fragments of the mitochondrial cytochrome oxidase subunit I (COI) gene. Amplification success for the newly determined sequences was highest (94%) with one set of universal COI primers (dgLCO1490-dgHCO2198) while other primer sets had distinctly lower success rates. By and large, we observed relatively high average interspecific genetic distances of 25-27% within the Mantellidae and Microhylidae, and genetic distances of 13-21% within the Hyperoliidae. Lower values of 6-7% were observed between some sister species in all families, with extreme lows of 0.2-0.3% between a few sister species pairs in microhylids and mantellids for which we postulate mitochondrial introgression or yet unsettled taxonomy. Within-species divergences were relatively high especially in mantellids where they averaged 5.3%, due to the inclusion of numerous deep conspecific lineages (by definition with high divergences to other specimens) in our study. Above this, the degree of polymorphism was difficult to establish owing to limited sampling per population in our assessment. Compared to a previous assessment from 2009 based on 16S rDNA sequences, we identify 14 additional undescribed candidate species and raise the maximum estimate of species in the island’s batrachofauna to well over 500.

Mammalia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Álvaro J. Benítez ◽  
Dina Ricardo-Caldera ◽  
María Atencia-Pineda ◽  
Jesús Ballesteros-Correa ◽  
Julio Chacón-Pacheco ◽  
...  

Abstract Bats are mammals of great ecological and medical importance, which have associations with different pathogenic microorganisms. DNA barcoding is a tool that can expedite species identification using short DNA sequences. In this study, we assess the DNA barcoding methodology in bats from the Colombian Northern region, specifically in the Córdoba department. Cytochrome oxidase subunit I (COI) gene sequences of nine bat species were typified, and their comparison with other Neotropic samples revealed that this marker is suitable for individual species identification, with ranges of intra-species variation from 0.1 to 0.9%. Bat species clusters are well supported and differentiated, showing average genetic distances ranging from 3% between Artibeus lituratus and Artibeus planirostris, up to 27% between Carollia castanea and Molossus molossus. C. castanea and Glossophaga soricina show geographical structuring in the Neotropic. The findings reported in this study confirm DNA barcoding usefulness for fast species identification of bats in the region.


2021 ◽  
Author(s):  
Tingting Zhou ◽  
Hongzhu Wang ◽  
Yongde Cui

Exploring the effectiveness of DNA barcoding in species identification is prerequisite for biodiversity conservation and environmental monitoring. Aquatic oligochaete could serve as an excellent indicator in aquatic monitoring programs. However, few studies have examined the effectiveness of DNA barcoding in these specific organisms. The mitochondrial COI gene and nuclear ITS2 gene of 83 specimens belonging to 36 species of 18 genera were sequenced in this study. The results showed that there was a barcode gap between species of Naididae, and the intraspecific genetic distances of each species were smaller than interspecific genetic distances. The classification results of ABGD (Automatic Barcode Gap Discovery) were consistent with those of morphological identification except for Tubifex tubifex and Lumbriculus variegatus. All species were successfully distinguished in the phylogenetic tree based on ITS2 gene, which was coincident with morphological result. Our results provided evidence that DNA barcoding can be used as an effective and convenient tool for species identification of the family Naididae and even aquatic oligochaete.


Diversity ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 460
Author(s):  
Jorge L. Ramirez ◽  
Luisa Simbine ◽  
Carla G. Marques ◽  
Eliana Zelada-Mázmela ◽  
Lorenzo E. Reyes-Flores ◽  
...  

The Penaeidae family includes some of the most economic and ecological important marine shrimp, comprising hundreds of species. Despite this importance and diversity, the taxonomic classification for penaeid shrimp has constantly been revised, and issues related to the species identification are common. In this study, we implemented DNA barcoding analyses in addition to single-gene species delimitation analyses in order to identify molecular operational taxonomy units (MOTUs) and to generate robust molecular information for penaeid shrimp based on the cytochrome oxidase subunit I (COI) mitochondrial gene. Our final data set includes COI sequences from 112 taxa distributed in 23 genera of penaeids. We employed the general mixed Yule coalescent (GMYC) model, the Poisson tree processes (PTP), and the Bayesian PTP model (bPTP) for MOTUs delimitation. Intraspecific and interspecific genetic distances were also calculated. Our findings evidenced a high level of hidden diversity, showing 143 MOTUs, with 27 nominal species not agreeing with the genetic delimitation obtained here. These data represent potential new species or highly structured populations, showing the importance of including a non-distance-based species delimitation approach in biodiversity studies. The results raised by this study shed light on the Penaeidae biodiversity, addressing important issues about taxonomy and mislabeling in databases and contributing to a better comprehension of the group, which can certainly help management policies for shrimp fishery activity in addition to conservation programs.


2015 ◽  
Vol 105 (5) ◽  
pp. 545-554 ◽  
Author(s):  
X.-B. Wang ◽  
J. Deng ◽  
J.-T. Zhang ◽  
Q.-S. Zhou ◽  
Y.-Z. Zhang ◽  
...  

AbstractThe soft scales (Hemiptera: Coccoidea: Coccidae) are a group of sap-sucking plant parasites, many of which are notorious agricultural pests. The quarantine and economic importance of soft scales necessitates rapid and reliable identification of these taxa. Nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene (barcoding region) and 28S rDNA were generated from 340 individuals of 36 common soft scales in China. Distance-based [(best match, Automated Barcode Gap Discovery (ABGD)], tree-based (neighbor-joining, Bayesian inference), Klee diagrams, and general mixed Yule coalescent (GMYC) models were used to evaluate barcoding success rates in the data set. Best match showed that COI and 28S sequences could provide 100 and 95.52% correct identification, respectively. The average interspecific divergences were 19.81% for COI data and 20.38% for 28S data, and mean intraspecific divergences were 0.56 and 0.07%, respectively. For COI data, multiple methods (ABGD, Klee, and tree-based methods) resulted in general congruence with morphological identifications. However, GMYC analysis tended to provide more molecular operational taxonomic units (MOTUs). Twelve MOTUs derived from five morphospecies (Rhodococcus sariuoni, Pulvinaria vitis, Pulvinaria aurantii, Parasaissetia nigra, and Ceroplastes rubens) were observed using the GMYC approach. In addition, tree-based methods showed that 28S sequences could be used for species-level identification (except for Ceroplastes ceriferus – Ceroplastes pseudoceriferus), even with low genetic variation (<1%). This report demonstrates the robustness of DNA barcoding for species discrimination of soft scales with two molecular markers (COI and 28S) and provides a reliable barcode library and rapid diagnostic tool for common soft scales in China.


Zootaxa ◽  
2017 ◽  
Vol 4286 (2) ◽  
pp. 277
Author(s):  
EUGENYI A. MAKARCHENKO ◽  
MARINA A. MAKARCHENKO ◽  
ALEXANDER A. SEMENCHENKO ◽  
OLEG A. VELIAEV

Illustrated descriptions of adult male, pupa and fourth instar larva, as well as DNA barcoding results of Hydrobaenus golovinensis sp. nov. in comparison with closely related species H. majus Makarchenko et Makarchenko and H. sikhotealinensis Makarchenko et Makarchenko from the Russian Far East are provided. Partial mitochondrial COI gene (DNA barcoding) of the new species has been sequenced and uploaded to GenBank. Comparisons with corresponding regions of COI between H. golovinensis and other species in the genus produce K2P genetic distances of 10.3–14.3%, the values well above those associated with intraspecific variation. In contrast, genetic distances among 18 specimens are all within the range of 0–3.5%. The ML tree is also constructed using DNA barcodes obtained in the present study and those of other species of Hydrobaenus Fries from GenBank. 


2019 ◽  
Vol 56 (4) ◽  
pp. 967-978 ◽  
Author(s):  
Jelena Đuknić ◽  
Vladimir M Jovanović ◽  
Nataša Popović ◽  
Ivana Živić ◽  
Maja Raković ◽  
...  

Abstract Many morphologically similar species of the simuliid (Diptera: Simuliidae) subgenus Wilhelmia, Enderlein are difficult to distinguish. Thus, the revision of the subgenus using various morphological, cytogenetic, and genetic analyses has been attempted. Neglected until now, the Balkan Peninsula, a crossroad between Europe and Anatolia, provides insight which could resolve problematic interrelationships of the taxa within this subgenus. To uncover the status and relations within the subgenus Wilhelmia, mtDNA was extracted from 47 individuals of six morphospecies: Simulium balcanicum (Enderlein, 1924), Simulium turgaicum Rubtsov, 1940, Simulium lineatum (Meigen, 1804), Simulium pseudequinum Séguy, 1921, Simulium equinum (Linnaeus, 1758), and Simulium paraequinum Puri, 1933 from 21 sites throughout the Balkan Peninsula. Phylogenetic analysis of the Wilhelmia species using mitochondrial DNA barcoding (COI) gene showed two major branches, the lineatum branch, which includes the lineages sergenti, paraequinum, and lineatum, and the equinum branch. In the equinum branch, the mtDNA sequences formed six clades, with high genetic distances, suggesting the existence of different species. Historically, the clades of the equinum branch appeared at numerous islands, perhaps as a result of allopatric speciation. The paraequinum lineage (lineatum branch) is composed of two species. However, six clades of the lineatum lineage overlapped with intra- and interspecific genetic distances. Our results revealed that the species S. balcanicum, S. pseudequinum B, and S. equinum were omnipresent in the Balkans. The results point to not only the fair diversity of Wilhelmia species in the Balkans, but also indicate that most Wilhelmia species live in sympatry.


ZooKeys ◽  
2019 ◽  
Vol 867 ◽  
pp. 55-71 ◽  
Author(s):  
Hong Zhang ◽  
Yalin Zhang ◽  
Yani Duan

We investigated the feasibility of using the DNA barcode region in identifying Deltocephalus from China. Sequences of the barcode region of the mitochondrial COI gene were obtained for 98 specimens (Deltocephalusvulgaris – 88, Deltocephaluspulicaris – 5, Deltocephalusuncinatus – 5). The average genetic distances among morphological and geographical groups of D.vulgaris ranged from 0.9% to 6.3% and among the three species of Deltocephalus ranged from 16.4% to 21.9% without overlap, which effectively reveals the existence of a “DNA barcoding gap”. It is important to assess the status of these morphological variants and explore the genetic variation among Chinese populations of D.vulgaris because the status of this species has led to taxonomic confusion because specimens representing two distinct morphological variants based on the form of the aedeagus are often encountered at a single locality. Forty-five haplotypes (D.vulgaris – 36, D.pulicaris – 5, D.uncinatus – 4) were defined to perform the phylogenetic analyses; they revealed no distinct lineages corresponding either to the two morphotypes of D.vulgaris or to geographical populations. Thus, there is no evidence that these variants represent genetically distinct species.


2021 ◽  
Vol 11 (2) ◽  
pp. 151-160
Author(s):  
Yanti Ariyanti ◽  
◽  
Ika Rini ◽  
Indah Oktaviani ◽  
Sovia Leksikowati ◽  
...  

Over the past decade, DNA barcoding has provided new insight into fish ecology and biosystematics and led to new species' discovery. DNA barcoding is a method for the recognition and identification of species using short, standardised DNA fragments. The correct taxonomic identification of species is critical for the assessment and monitoring of biodiversity. This study applied DNA barcoding techniques to identify selected fish species from a mangrove-based estuary in Way Kambas National Park, Lampung Province, Indonesia. The gene encoding cytochrome c oxidase subunit I (COI) was amplified and bi-directionally sequenced from 22 specimens. The resulting 680 base pairs (bp) sequence was used to identify species, obtain phylogenetic information, and analyse genetic distances. A neighbour-joining tree was constructed based on the mitochondrial COI gene using the Kimura two-parameter model. This study also exhibits conservation status for those identified species. Our findings will facilitate future studies of fish species diversity in mangrove estuary-based ecosystems and provide preliminary data in policymaking in conservation areas such as National Park.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tingting Zhou ◽  
Wei Jiang ◽  
Hongzhu Wang ◽  
Yongde Cui

Exploring the effectiveness of DNA barcoding in species identification is a prerequisite for biodiversity conservation and environmental monitoring. Aquatic oligochaetes could serve as excellent indicators in aquatic monitoring programmes. However, few studies have examined the effectiveness of DNA barcoding in these specific organisms. The mitochondrial cytochrome C oxidase (COI) gene of 83 specimens belonging to 40 species of 18 genera were sequenced in this study. The results showed that there was a barcode gap between species of Naididae and the intraspecific genetic distances of each species were smaller than interspecific genetic distances. The classification results of ABGD (Automatic Barcode Gap Discovery) were consistent with those of morphological identification, except for Tubifex tubifex and Lumbriculus variegatus. All species were successfully distinguished in the phylogenetic tree, based on the ITS2 region, which was coincident with the morphological result. Our results provided evidence that DNA barcoding can be used as an effective and convenient tool for species identification of the family Naididae and even for other aquatic oligochaetes.


Zootaxa ◽  
2017 ◽  
Vol 4286 (2) ◽  
pp. 151 ◽  
Author(s):  
WANQING ZHAO ◽  
QING ZHAO ◽  
MIN LI ◽  
JIUFENG WEI ◽  
XIANHONG ZHANG ◽  
...  

The phenotype, as a significant identification character for the bug species Eurydema Laporte, 1833, possesses many variation patterns, making this species difficult to determine. In this context, DNA barcoding provides an efficient method for species identification. In our study, we used distance-based and tree-based methods to assess the effectiveness of COI gene as an additional taxonomic method. We examined COI sequences of 203 specimens collected in China. Intra- and interspecific genetic distances were calculated, and a phylogenetic tree was constructed using the neighbor-joining (NJ) method. The program TaxonDNA was used to calculate the distribution of distances and investigated the barcode gap. DNA barcodes revealed 100% (ABGD), 99.5% (TaxonDNA) and 97.5% (Barcode Index Numbers) successful identification rates. In the NJ tree, all taxonomic species showed monophyletic clusters that were separated from each other by large genetic distances (> 4.3%). Low divergence (< 0.6%) and non-monophyly clusters that included different phenotype variations were found in E. dominulus and E. oleracea. Compared with other Eurydema species, E. sp. had an average interspecific distance of 7.4% that was congeneric distance, and formed a distinct cluster among Eurydema tree clades. We also confirmed a new combination of Eurydema qinlingensis (Zheng, 1982) comb. nov. based on DNA barcoding and morphology data. Overall, our data showed that, despite the little barcode overlap between intra- and interspecific genetic distances, DNA barcoding is a useful and effective method for enhancing morphological data and resolving taxonomic problems. 


Sign in / Sign up

Export Citation Format

Share Document