scholarly journals Assessment of Sesamia nonagrioides (Lepidoptera: Noctuidae) EcR and USP Genes as Targets for Exogenous Non-Persistent RNAi

Diversity ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 677
Author(s):  
Dimitrios Kontogiannatos ◽  
Luc Swevers ◽  
Anna Kourti

RNA interference (RNAi) is a transforming technology with high potential for practical applications in biology, including specific and safe insect pest control. For developing RNAi-based pest-control products no general recommendations exist and the best strategy needs to be determined for each insect pest separately on a case-by-case basis. In this research, the potential of silencing the genes encoding the subunits of the ecdysone receptor complex, EcR and Ultraspiracle (USP) by RNAi was evaluated in the corn borer, Sesamia nonagrioides, using different delivery approaches and targeting different developmental stages. In conjunction with our previous research it is demonstrated that prepupae are sensitive to RNAi triggered by dsRNA injection and that feeding of dsRNA-expressing bacteria throughout S. nonagrioides’ larval life can lead to limited developmental malformations with no potent insecticidal results. Our results, consistent with previous studies, indicated a great fluctuation of exogenous RNAi effectiveness in the Lepidopteran species, suggesting that further factors should be taken into consideration in order to expand this very promising field into the ‘’RNAi-resistant’’ insect species.

2002 ◽  
Vol 21 (3) ◽  
pp. 217-225 ◽  
Author(s):  
R. Albajes ◽  
M. Konstantopoulou ◽  
O. Etchepare ◽  
M. Eizaguirre ◽  
B. Frérot ◽  
...  

2005 ◽  
Vol 137 (3) ◽  
pp. 350-355 ◽  
Author(s):  
A. Butrón ◽  
B. Ordás ◽  
P. Revilla ◽  
G. Sandoya ◽  
A. Ordás ◽  
...  

AbstractThe pink stem borer (PSB) (Sesamia nonagrioides Lefèbvre, 1827; Lepidoptera: Noctuidae) is the main insect pest of maize (Zea mays L., Poaceae) in the Mediterranean area. Maize varieties partially resistant to PSB have been identified, but few studies have documented the mechanisms of resistance involved. The objectives of this research were to study the levels of leaf and sheath antibiosis of a maize population, EPS12, and determine whether antibiosis improved over the selection process for less stalk tunneling. A hybrid check and two Bacillus thuringiensis (Bt) hybrids were also examined. Several bioassays were carried out in a control chamber to evaluate antibiosis of maize leaves and sheaths against PSB larvae. Leaf antibiosis was significantly higher for EPS12 than for the hybrid check and sheath antibiosis was low for all non-Bt hybrids studied. We conclude that leaf and sheath antibiosis was not significantly improved during the selection process. Future efforts should look for other possible mechanisms of resistance, such as stem rind antibiosis.


2018 ◽  
Vol 112 (1) ◽  
pp. 396-406
Author(s):  
Muluken Goftishu ◽  
Yoseph Assefa ◽  
Augustine Niba ◽  
Chemeda Fininsa ◽  
Casper Nyamukondiwa ◽  
...  

2020 ◽  
Author(s):  
Peirong Li ◽  
Xinru Li ◽  
Wei Wang ◽  
Xiaoling Tan ◽  
Xiaoqi Wang ◽  
...  

Abstract Background Metamorphosis ensures the transformation of a larva of the holometabolous insects into a reproductive adult through a transitory pupal stage. Understanding how changes in expression levels of genes during the prepupal-pupal transition will inform us of how the metamorphosis arises. Results In this study, mature larvae (ML), wandering (W), 1 day (P1), 5 days (P5), and 10 days (P10) after pupation of the Mythimna separata (Walker), a notorious migratory pest of agricultural crops, were selected, forming five groups. RNA-Seq revealed that the draft transcriptome assembly contained 140562 contigs, and more than half (74,059) were similar to sequence at NCBI (e value < e− 3), including 22884, 23534, 26643, and 33238 differentially expressed genes (DEGs) in ML vs W, W vs P1, P1 vs P5, and P5-vs-P10, respectively. Comparative transcriptomics revealed the enrichment of biological processes related to the membrane and integral component of membrane, which includes the cuticular protein (CP), 20-hydroxyecdysone (20E), and juvenile hormone (JH) biosynthesis, enabled us to delineate and partially validate the metabolic pathway in M. separata. Of these DEGs, 33 CP, 18 20E, and 7 JH genes were differentially expressed across the developmental stages. Correlation analysis uncovered that the relative expression levels of 10 selected CP, 20E, and JH-related genes obtained by real-time PCR quantitative (RT-qPCR) matched well with their FPKM values derived from RNA-seq. Conclusions The data gave here represent an important first step to uncover the molecular mechanism of metamorphosis in M. separata, which also provide valuable information for manipulation of insect development and metamorphosis using the obtained DEGs as targets and broaden the applications of available tools for insect pest control.


Sign in / Sign up

Export Citation Format

Share Document