Transcriptome Analysis Reveals Candidate Genes During the Prepupal-pupal Transition in the Oriental Armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae)

2020 ◽  
Author(s):  
Peirong Li ◽  
Xinru Li ◽  
Wei Wang ◽  
Xiaoling Tan ◽  
Xiaoqi Wang ◽  
...  

Abstract Background Metamorphosis ensures the transformation of a larva of the holometabolous insects into a reproductive adult through a transitory pupal stage. Understanding how changes in expression levels of genes during the prepupal-pupal transition will inform us of how the metamorphosis arises. Results In this study, mature larvae (ML), wandering (W), 1 day (P1), 5 days (P5), and 10 days (P10) after pupation of the Mythimna separata (Walker), a notorious migratory pest of agricultural crops, were selected, forming five groups. RNA-Seq revealed that the draft transcriptome assembly contained 140562 contigs, and more than half (74,059) were similar to sequence at NCBI (e value < e− 3), including 22884, 23534, 26643, and 33238 differentially expressed genes (DEGs) in ML vs W, W vs P1, P1 vs P5, and P5-vs-P10, respectively. Comparative transcriptomics revealed the enrichment of biological processes related to the membrane and integral component of membrane, which includes the cuticular protein (CP), 20-hydroxyecdysone (20E), and juvenile hormone (JH) biosynthesis, enabled us to delineate and partially validate the metabolic pathway in M. separata. Of these DEGs, 33 CP, 18 20E, and 7 JH genes were differentially expressed across the developmental stages. Correlation analysis uncovered that the relative expression levels of 10 selected CP, 20E, and JH-related genes obtained by real-time PCR quantitative (RT-qPCR) matched well with their FPKM values derived from RNA-seq. Conclusions The data gave here represent an important first step to uncover the molecular mechanism of metamorphosis in M. separata, which also provide valuable information for manipulation of insect development and metamorphosis using the obtained DEGs as targets and broaden the applications of available tools for insect pest control.

Author(s):  
Peirong Li ◽  
Xinru Li ◽  
Wei Wang ◽  
Xiaoling Tan ◽  
Xiaoqi Wang ◽  
...  

Abstract The oriental armyworm, Mythimna separata (Walker) is a serious pest of agriculture that does particular damage to Gramineae crops in Asia, Europe, and Oceania. Metamorphosis is a key developmental stage in insects, although the genes underlying the metamorphic transition in M. separata remain largely unknown. Here, we sequenced the transcriptomes of five stages; mature larvae (ML), wandering (W), and pupation (1, 5, and 10 days after pupation, designated P1, P5, and P10) to identify transition-associated genes. Four libraries were generated, with 22,884, 23,534, 26,643, and 33,238 differentially expressed genes (DEGs) for the ML-vs-W, W-vs-P1, P1-vs-P5, and P5-vs-P10, respectively. Gene ontology enrichment analysis of DEGs showed that genes regulating the biosynthesis of the membrane and integral components of the membrane, which includes the cuticular protein (CP), 20-hydroxyecdysone (20E), and juvenile hormone (JH) biosynthesis, were enriched. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that DEGs were enriched in the metabolic pathways. Of these DEGs, thirty CP, seventeen 20E, and seven JH genes were differentially expressed across the developmental stages. For transcriptome validation, ten CP, 20E, and JH-related genes were selected and verified by real-time PCR quantitative. Collectively, our results provided a basis for further studies of the molecular mechanism of metamorphosis in M. separata.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Weitong Cui ◽  
Huaru Xue ◽  
Lei Wei ◽  
Jinghua Jin ◽  
Xuewen Tian ◽  
...  

Abstract Background RNA sequencing (RNA-Seq) has been widely applied in oncology for monitoring transcriptome changes. However, the emerging problem that high variation of gene expression levels caused by tumor heterogeneity may affect the reproducibility of differential expression (DE) results has rarely been studied. Here, we investigated the reproducibility of DE results for any given number of biological replicates between 3 and 24 and explored why a great many differentially expressed genes (DEGs) were not reproducible. Results Our findings demonstrate that poor reproducibility of DE results exists not only for small sample sizes, but also for relatively large sample sizes. Quite a few of the DEGs detected are specific to the samples in use, rather than genuinely differentially expressed under different conditions. Poor reproducibility of DE results is mainly caused by high variation of gene expression levels for the same gene in different samples. Even though biological variation may account for much of the high variation of gene expression levels, the effect of outlier count data also needs to be treated seriously, as outlier data severely interfere with DE analysis. Conclusions High heterogeneity exists not only in tumor tissue samples of each cancer type studied, but also in normal samples. High heterogeneity leads to poor reproducibility of DEGs, undermining generalization of differential expression results. Therefore, it is necessary to use large sample sizes (at least 10 if possible) in RNA-Seq experimental designs to reduce the impact of biological variability and DE results should be interpreted cautiously unless soundly validated.


2019 ◽  
Author(s):  
Ahsan Z. Rizvi ◽  
Kalyani Dhusia

AbstractRNA-sequencing (RNA-seq) data analysis of the different stages of root nodules formation in peanut Arachis hypogaea investigate the genetic features. Genes related to the root nodules formations in this plant are extensively studied [1] [2] [3] [4] [5], but less information is present for their relations with long noncoding RNAs (lncRNAs). Bioinformatics techniques are utilised here to identify the novel lncRNAs present in the publically available RNA-seq data reported [6] for the different stages of root nodules formation in this plant. Highly correlated, significant, and Differentially Expressed (DE) gene-lncRNA pairs are also detected to understand the epigenetic control of lncRNA. These pairs are further differentiated between cis and trans antisense lncRNAs and lincRNAs based on their functions and positions from the genes. Obtained results are the catalogue for the highly correlated and significant DE gene-lncRNA pairs related to root nodules formation in A. hypogaea.


2021 ◽  
Author(s):  
Chia Lock Tan ◽  
Rosmin Kasran ◽  
Wei Wei Lee ◽  
Wai Mun Leong

The cocoa pod borer, Conopomorpha cramerella (Snellen) is a serious pest in cocoa plantations in Southeast Asia.  It causes significant losses in the crop.  Unfortunately, genetic resources for this insect is extremely scarce.  To improve these resources, we sequenced the transcriptome of C. cramerella representing the three stages of development, larva, pupa and adult moth using Illumina NovaSeq6000.  Transcriptome assembly was performed by Trinity for all the samples.  A total number of 147,356,088 high quality reads were obtained.  Of these, 285,882 contigs were assembled.  The mean contig size was 374 bp.  Protein coding sequence (CDS) was extracted from the reconstructed transcripts by TransDecoder.  Subsequently, BlastX and InterProScan were applied for homology search to make a prediction of the function of CDS in unigene.  Additionally, we identified a number of genes that are involved in reproduction and development such as genes involved in general function processes in the insect.  Genes found to be involved in reproduction such as porin, dsx, bol and fruitless were associated with sex determination, spermatogenesis and pheromone binding.  Furthermore, transcriptome changes during development were analysed.  There were 2,843 differentially expressed genes (DEG) detected between the larva and pupa samples.  A total of 2,861 DEG were detected between adult and larva stage whereas between adult and pupa stage, 1,953 DEG were found.  In conclusion, the transcriptomes could be a valuable genetic resource for identification of genes in C. cramerella and the study will provide putative targets for RNAi pest control.


2021 ◽  
Vol 12 ◽  
Author(s):  
Meng Zhang ◽  
Hengling Wei ◽  
Pengbo Hao ◽  
Aimin Wu ◽  
Qiang Ma ◽  
...  

Glycerol-3-phosphate acyltransferases (GPATs), critical for multiple biological processes like male fertility, have been extensively characterized. However, their precise functions and underlying regulatory mechanism in cotton anther development are unclear. This research demonstrated the importance of GhGPAT12/25 (a paralogs pair on A12/D12 sub-chromosome of cotton) to regulate the degradation of tapetum, anther cuticle formation, and pollen exine development. GhGPAT12 and GhGPAT25 exhibited specifically detected transcripts in tapetum and pollen exine during the early anther developmental stages. GhGPAT12/25 are sn-2 glycerol-3-phosphate acyltransferases and can transfer the acyl group of palmitoyl-CoA to glycerol-3-phosphate (G3P). CRISPR/Cas9-mediated knockout identified the functional redundancy of GhGPAT12 and GhGPAT25. Knockout of both genes caused completely male sterility associated with abnormal anther cuticle, swollen tapetum, and inviable microspores with defective exine and irregular unrestricted shape. RNA-seq analysis showed that the loss of function of GhGPAT12/25 affects the processes of wax metabolic, glycerol monomer biosynthesis, and transport. Consistently, cuticular waxes were dramatically reduced in mutant anthers. Yeast one-hybrid system (Y1H), virus-induced gene silencing (VIGS), and dual-luciferase (LUC) assays illustrated that GhMYB80s are likely to directly activate the expression of GhGPAT12/25. This study provides important insights for revealing the regulatory mechanism underlying anther development in cotton.


2019 ◽  
Author(s):  
Michal Levin ◽  
Harel Zalts ◽  
Natalia Mostov ◽  
Tamar Hashimshony ◽  
Itai Yanai

AbstractAlternative polyadenylation (APA) leads to multiple transcripts from the same gene, yet their distinct functional attributes remain largely unknown. Here, we introduce APA-seq to detect the expression levels of APA isoforms from 3’-end RNA-Seq data by exploiting both paired-end reads for gene isoform identification and quantification. Applying APA-seq, we detected the expression levels of APA isoforms from RNA-Seq data of single C. elegans embryos, and studied the patterns of 3’ UTR isoform expression throughout embryogenesis. We found that global changes in APA usage demarcate developmental stages, suggesting a requirement for distinct 3’ UTR isoforms throughout embryogenesis. We distinguished two classes of genes, depending upon the correlation between the temporal profiles of their isoforms: those with highly correlated isoforms (HCI) and those with lowly correlated isoforms (LCI) across time. This led us to hypothesize that variants produced with similar expression profiles may be the product of biological noise, while the LCI variants may be under tighter selection and consequently their distinct 3’ UTR isoforms are more likely to have functional consequences. Supporting this notion, we found that LCI genes have significantly more miRNA binding sites, more correlated expression profiles with those of their targeting miRNAs and a relative lack of correspondence between their transcription and protein abundances. Collectively, our results suggest that a lack of coherence among the regulation of 3’ UTR isoforms is a proxy for selective pressures acting upon APA usage and consequently for their functional relevance.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 812
Author(s):  
Shiwen Yang ◽  
Kehao Liang ◽  
Aibin Wang ◽  
Ming Zhang ◽  
Jiangming Qiu ◽  
...  

Camellia (C.) oleifera Abel. is an evergreen small arbor with high economic value for producing edible oil that is well known for its high level of unsaturated fatty acids. The yield formation of tea oil extracted from fruit originates from the leaves, so leaf senescence, the final stage of leaf development, is an important agronomic trait affecting the production and quality of tea oil. However, the physiological characteristics and molecular mechanism underlying leaf senescence of C. oleifera are poorly understood. In this study, we performed physiological observation and de novo transcriptome assembly for annual leaves and biennial leaves of C. oleifera. The physiological assays showed that the content of chlorophyll (Chl), soluble protein, and antioxidant enzymes including superoxide dismutase, peroxide dismutase, and catalase in senescing leaves decreased significantly, while the proline and malondialdehyde concentration increased. By analyzing RNA-Seq data, we identified 4645 significantly differentially expressed unigenes (DEGs) in biennial leaves with most associated with flavonoid and phenylpropanoid biosynthesis and phenylalanine metabolism pathways. Among these DEGs, 77 senescence-associated genes (SAGs) including NOL, ATAF1, MDAR, and SAG12 were classified to be related to Chl degradation, plant hormone, and oxidation pathways. The further analysis of the 77 SAGs based on the Spearman correlation algorithm showed that there was a significant expression correlation between these SAGs, suggesting the potential connections between SAGs in jointly regulating leaf senescence. A total of 162 differentially expressed transcription factors (TFs) identified during leaf senescence were mostly distributed in MYB (myeloblastosis), ERF (Ethylene-responsive factor), WRKY, and NAC (NAM, ATAF1/2 and CUCU2) families. In addition, qRT-PCR analysis of 19 putative SAGs were in accordance with the RNA-Seq data, further confirming the reliability and accuracy of the RNA-Seq. Collectively, we provide the first report of the transcriptome analysis of C. oleifera leaves of two kinds of age and a basis for understanding the molecular mechanism of leaf senescence.


2013 ◽  
Vol 25 (1) ◽  
pp. 251
Author(s):  
S. Krebs ◽  
A. Graf ◽  
Z. Valeri ◽  
H. Blum ◽  
E. Wolf

In order to provide a comprehensive view of the transcriptome changes during the earliest stages of bovine development, we sequenced the total RNA content of bovine oocytes, 4-cell, 8-cell, and 16-cell embryos and the inner cell mass and trophoblast envelope of expanded blastocysts on the Illumina Genome Analyzer IIx. For each experiment pools of in vitro matured oocytes from the German Simmental cows were fertilized by sperm of a single bull, and 10 oocytes or embryos per developmental stage were collected to generate total RNA pools used for sequencing. Synthesis of cDNA was initiated directly in the cell lysate in order to avoid any losses during RNA preparation and was random primed in order to capture all RNA species. Amplified cDNA and unstranded sequencing libraries were prepared using kits from Nugen (Ovation RNA-Seq, Nugen, San Carlos, CA, USA). Biological replicates were generated by inseminating the oocytes with sperm from the distant breeds Jersey (n = 3) and Brahman (n = 3). This cross-breeding design allowed tracking of single sequencing reads back to the maternal or paternal genome, where breed-specific SNP are present in the expressed transcripts. The analysis of this dataset resulted in monitoring of zygotic genome activation and parent-specific expression for single transcripts, a catalogue of splicing isoforms, novel transcripts, and non-coding RNAs and differentially expressed genes between the single developmental stages. Using the program DESEqn, 2784 genes showed differential expression between any of the stages at a false discovery rate of 1%. Specifically, we found 200 genes differentially expressed between immature and matured oocytes, 209 genes between matured oocytes and 4-cell embryos, 580 genes between the 4-cell and 8-cell stage, 567 genes between the 8-cell and 16-cell stage, 987 genes between the 16-cell stage and the inner cell mass, and 1569 genes between the 16-cell and the trophoblast. Functional analysis revealed stage-specific functions of the differentially expressed genes. In summary, by fully exploiting the single-nucleotide resolution of the RNA-Seq method, this dataset provides an invaluable resource for the study of zygotic genome activation, imprinting, transcript annotation, and gene expression in the earliest developmental stages of bovine embryos.


2016 ◽  
Vol 2016 ◽  
pp. 1-4 ◽  
Author(s):  
Guoqiang Wan ◽  
Wenyang Zhou ◽  
Yang Hu ◽  
Rui Ma ◽  
Shuilin Jin ◽  
...  

Increasing studies have revealed that long noncoding RNAs (lncRNAs) are not transcriptional noise but play important roles in the regulation of a wide range of biological processes, and the dysregulation of lncRNA genes is associated with disease development. Alzheimer’s disease (AD) is a chronic neurodegenerative disease that usually starts slowly and gets worse over time. However, little is known about the roles of lncRNA genes in AD and how the lncRNA genes are transcriptionally regulated. Herein, we analyzed RNA-seq data and ChIP-seq histone modification data from CK-p25 AD model and control mice and identified 72 differentially expressed lncRNA genes, 4,917 differential peaks of H3K4me3, and 1,624 differential peaks of H3K27me3 between AD and control samples, respectively. Furthermore, we found 92 differential peaks of histone modification H3K4me3 are located in the promoter of 39 differentially expressed lncRNA genes and 8 differential peaks of histone modification H3K27me3 are located upstream of 7 differentially expressed lncRNA genes, which suggest that the majority of lncRNA genes may be transcriptionally regulated by histone modification in AD.


2019 ◽  
Vol 19 (5) ◽  
Author(s):  
Liu Pengfei ◽  
Wang Weiwei ◽  
Ling Xiaofei ◽  
Lu Qin ◽  
Zhang Jinwen ◽  
...  

Abstract Insect hormones regulate metamorphosis including that leading to sexual dimorphism. Using RNA-Seq, we discovered that the second-instar male larva (SM) of the white wax insect, Ericerus pela, have 5,968 and 8,620 differentially expressed transcripts compared with the second-instar female larva (SF) and the first-instar male larva (FM), respectively. The expression levels of genes involved in the apoptosis of old tissues and the reconstruction of new ones in the SM significantly enhanced, while the SF mainly has enhanced expression levels of anabolic genes such as chitin. We predicted that the second-instar larvae are the developmental origin of sexual dimorphic metamorphosis. Meanwhile, in the juvenile hormone (JH) metabolic pathway, CYP15A1 and JH esterase (JHE) are differentially expressed; and in the 20-hydroxyecdysone (20E) metabolic pathway, CYP307A1, CYP314A1, and CYP18A1 are differentially expressed. In the SM, the expression levels of CYP307A1 and CYP314A1 are significantly increased, whereas the expression level of CYP18A1 is significantly decreased; in the SF, the expression levels of the above genes are opposite to that of the SM. Expression trends of RNA-seq is consistent with the expression level of qRT–PCR, and seven of them are highly correlated (R ≥ 0.610) and four are moderately correlated (0.588 ≥ R ≥ 0.542).


Sign in / Sign up

Export Citation Format

Share Document