scholarly journals Local Bone Mineral Density, Subcutaneous and Visceral Adipose Tissue Measurements in Routine Multi Detector Computed Tomography—Which Parameter Predicts Incident Vertebral Fractures Best?

Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 240
Author(s):  
Egon Burian ◽  
Lioba Grundl ◽  
Tobias Greve ◽  
Daniela Junker ◽  
Nico Sollmann ◽  
...  

In this case-control study the value of bone mineral density (BMD) at different vertebral levels, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) to identify patients with incident osteoporotic vertebral fractures in routine multi-detector computed tomography (MDCT) exams was assessed. Material and methods: Seventeen patients who underwent baseline and follow-up routine contrast-enhanced MDCT and had an incident osteoporotic vertebral fracture at follow-up were included. Seventeen age-, sex- and follow-up duration-matched controls were identified. Trabecular BMD (from Th5 to L5) as well as cross-sectional area of SAT and VAT were extracted. Results: BMD performed best to differentiate patients with an incident fracture from controls at the levels of Th5 (area under the curve [AUC] = 0.781, p = 0.014), Th7 (AUC = 0.877, p = 0.001), and Th9 (AUC = 0.818, p = 0.005). Applying multivariate logistic regression BMD at Th7 level remained the only significant predictor of incident vertebral fractures (Th5-L5) with an odds ratio of 1.07 per BMD SD decrease. VAT and SAT did not show significant differences between the fracture and control group (p > 0.05). Conclusion: The local BMD measurement appears to be more suitable than standard mean BMD from L1–L3 for fracture risk assessment.

2020 ◽  
Vol 31 (12) ◽  
pp. 2439-2448 ◽  
Author(s):  
K. Zhu ◽  
M. Hunter ◽  
A. James ◽  
E.M. Lim ◽  
B.R. Cooke ◽  
...  

2020 ◽  
Vol 41 (04) ◽  
pp. 242-247
Author(s):  
Christiana J. Raymond-Pope ◽  
Anna L. Solfest ◽  
Aaron Carbuhn ◽  
Philip R. Stanforth ◽  
Jonathan Oliver ◽  
...  

AbstractThis study aimed to examine body composition using dual X-ray absorptiometry (DXA) in male and female NCAA Division I collegiate basketball athletes. Two-hundred ten (male [M]/female [F]=88/122) basketball athletes’ total and regional fat mass, lean mass, bone mineral density, and visceral adipose tissue were measured. Athletes were classified as: point guards (M/F=27/34), shooting guards (M/F=18/27), small forwards (M/F=13/18), power forwards (M/F=21/27), and centers (M/F=9/16). ANOVA and Tukey’s HSD assessed positional differences by sex. In males, centers and power forwards had greater total fat mass (p<0.025), lean mass (p≤0.001), and visceral adipose tissue (p<0.001) than other positions. Male centers had greater arm and leg fat mass and lean mass than point guards, shooting guards, and small forwards (p≤0.049), and greater arm bone mineral density than point guards (p=0.015). In females, centers had greater total fat mass (p<0.001) vs. other positions and greater total lean mass, arm fat and lean masses, arm and leg bone mineral density, and visceral adipose tissue vs. point guards and shooting guards (p≤0.005). Female point guards had lower total bone mineral density than power forwards (p=0.008). In conclusion, these sex- and position-specific total and regional body composition measurements in collegiate basketball players provide population-specific normative data.


Data in Brief ◽  
2016 ◽  
Vol 7 ◽  
pp. 1658-1664
Author(s):  
Yoko Murakami ◽  
Yukihiro Nagatani ◽  
Masashi Takahashi ◽  
Mitsuru Ikeda ◽  
Itsuko Miyazawa ◽  
...  

2005 ◽  
Vol 46 (3) ◽  
pp. 269-275 ◽  
Author(s):  
G. Guglielmi ◽  
I. Floriani ◽  
V. Torri ◽  
J. Li ◽  
C. van Kuijk ◽  
...  

Purpose: To evaluate the impact of degenerative changes due to osteoarthritis (OA) at the spine on volumetric bone mineral density (BMD) as measured by volumetric quantitative computed tomography (vQCT). Material and Methods: Eighty‐four elderly women (mean age 73±6 years), comprising 33 with vertebral fractures assessed by radiographs and 51 without vertebral fractures, were studied. Trabecular, cortical, and integral BMD were examined at the spine and hip using a helical CT scanner and were compared to dual X‐ray absorptiometry (DXA) measurements at the same sites. OA changes visible on the radiographs were categorized into two grades according to severity. Differences in BMD measures obtained in the two groups of patients defined by OA grade using the described radiologic methods were compared using analysis of variance. Standardized difference (effect sizes) was also compared between radiologic methods. Results: Spinal trabecular BMD did not differ significantly between OA grade 0 and OA grade 1. Spinal cortical and integral BMD measures showed statistically significant differences, as did the lumbar spine DXA BMD measurement (13%, P = 0.02). The QCT measurements at the hip were also higher in OA 1 subjects. Femoral trabecular BMD was 13–15% higher in OA grade 1 subjects than in OA grade 0 subjects. The cortical BMD measures in the CT_TOT_FEM and CT_TROCH ROI's were also higher in the OA 1 subjects. The integral QCT BMD measures in the hip showed difference between grades OA 1 and 0. The DXA measurements in the neck and trochanter ROI's showed smaller differences (9 and 11%, respectively). There were no statistically significant differences in bone size. Conclusion: There is no evidence supporting that trabecular BMD measurements by QCT are influenced by OA. Instead, degenerative changes have an effect on both cortical and integral QCT, and on DXA at the lumbar spine and the hip. For subjects with established OA, assessment of BMD by volumetric QCT may be suggested.


Sign in / Sign up

Export Citation Format

Share Document