scholarly journals Accuracy of New Deep Learning Model-Based Segmentation and Key-Point Multi-Detection Method for Ultrasonographic Developmental Dysplasia of the Hip (DDH) Screening

Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1174
Author(s):  
Si-Wook Lee ◽  
Hee-Uk Ye ◽  
Kyung-Jae Lee ◽  
Woo-Young Jang ◽  
Jong-Ha Lee ◽  
...  

Hip joint ultrasonographic (US) imaging is the golden standard for developmental dysplasia of the hip (DDH) screening. However, the effectiveness of this technique is subject to interoperator and intraobserver variability. Thus, a multi-detection deep learning artificial intelligence (AI)-based computer-aided diagnosis (CAD) system was developed and evaluated. The deep learning model used a two-stage training process to segment the four key anatomical structures and extract their respective key points. In addition, the check angle of the ilium body balancing level was set to evaluate the system’s cognitive ability. Hence, only images with visible key anatomical points and a check angle within ±5° were used in the analysis. Of the original 921 images, 320 (34.7%) were deemed appropriate for screening by both the system and human observer. Moderate agreement (80.9%) was seen in the check angles of the appropriate group (Cohen’s κ = 0.525). Similarly, there was excellent agreement in the intraclass correlation coefficient (ICC) value between the measurers of the alpha angle (ICC = 0.764) and a good agreement in beta angle (ICC = 0.743). The developed system performed similarly to experienced medical experts; thus, it could further aid the effectiveness and speed of DDH diagnosis.

BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Huan Yang ◽  
Lili Chen ◽  
Zhiqiang Cheng ◽  
Minglei Yang ◽  
Jianbo Wang ◽  
...  

Abstract Background Targeted therapy and immunotherapy put forward higher demands for accurate lung cancer classification, as well as benign versus malignant disease discrimination. Digital whole slide images (WSIs) witnessed the transition from traditional histopathology to computational approaches, arousing a hype of deep learning methods for histopathological analysis. We aimed at exploring the potential of deep learning models in the identification of lung cancer subtypes and cancer mimics from WSIs. Methods We initially obtained 741 WSIs from the First Affiliated Hospital of Sun Yat-sen University (SYSUFH) for the deep learning model development, optimization, and verification. Additional 318 WSIs from SYSUFH, 212 from Shenzhen People’s Hospital, and 422 from The Cancer Genome Atlas were further collected for multi-centre verification. EfficientNet-B5- and ResNet-50-based deep learning methods were developed and compared using the metrics of recall, precision, F1-score, and areas under the curve (AUCs). A threshold-based tumour-first aggregation approach was proposed and implemented for the label inferencing of WSIs with complex tissue components. Four pathologists of different levels from SYSUFH reviewed all the testing slides blindly, and the diagnosing results were used for quantitative comparisons with the best performing deep learning model. Results We developed the first deep learning-based six-type classifier for histopathological WSI classification of lung adenocarcinoma, lung squamous cell carcinoma, small cell lung carcinoma, pulmonary tuberculosis, organizing pneumonia, and normal lung. The EfficientNet-B5-based model outperformed ResNet-50 and was selected as the backbone in the classifier. Tested on 1067 slides from four cohorts of different medical centres, AUCs of 0.970, 0.918, 0.963, and 0.978 were achieved, respectively. The classifier achieved high consistence to the ground truth and attending pathologists with high intraclass correlation coefficients over 0.873. Conclusions Multi-cohort testing demonstrated our six-type classifier achieved consistent and comparable performance to experienced pathologists and gained advantages over other existing computational methods. The visualization of prediction heatmap improved the model interpretability intuitively. The classifier with the threshold-based tumour-first label inferencing method exhibited excellent accuracy and feasibility in classifying lung cancers and confused nonneoplastic tissues, indicating that deep learning can resolve complex multi-class tissue classification that conforms to real-world histopathological scenarios.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


2021 ◽  
Vol 296 ◽  
pp. 126564
Author(s):  
Md Alamgir Hossain ◽  
Ripon K. Chakrabortty ◽  
Sondoss Elsawah ◽  
Michael J. Ryan

Sign in / Sign up

Export Citation Format

Share Document