scholarly journals Ωto_abR: A Web Application for the Visualization and Analysis of Click-Evoked Auditory Brainstem Responses

Digital ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 188-197
Author(s):  
Aristotelis Ballas ◽  
Panagiotis Katrakazas

Since its inception by Jewett and Williston in the late 1960s, the auditory brainstem response (ABR) has been an indispensable diagnostic tool, used by audiologists around the world. Click-evoked ABR testing proves to be a reliable tool, as it provides an objective representation of the auditory function, an estimate of hearing thresholds and the ability to pinpoint a potential issue in the auditory neural pathway. The present study describes state-of-the-art ABR analytics-related platforms and provides an overview of their functionality. In conjunction, we introduce the design and development of a newly developed, user-friendly web application, built in R language. This application provides several well-known and newly key characteristics for the analysis of ABR waveforms. These include absolute peak latencies, amplitudes, and interpeak latencies.

2019 ◽  
Vol 2 (1) ◽  
pp. 17-21
Author(s):  
Adil Munir ◽  
Nazia Mumtaz ◽  
Ghulam Saqulain ◽  
Munir Ahmad

Objective: Hearing loss (HL) with a local prevalence of 5.7%, is the commonest childhood disability, requiring Early Hearing Detection and Intervention (EHDI) programs to reduce the disability burden. Knowing the degree, type and configuration of HL is prerequisite for appropriate amplification, with Automated Auditory Brainstem Responses (ABR) being commonly used for this purpose, however Auditory Steady State Response (ASSR) has been recently introduced in the region. This study was conducted to compare ABR to ASSR, as an early diagnostic tool in children under five years of age. Methodology: This cross-sectional comparative study was performed at the Auditory Verbal Institute of Audiology and Speech (AVIAS) clinics in Rawalpindi and Islamabad, from December 2016 to September 2017. It included thirty-two cases (n=32) who visited AVIAS clinics for hearing assessment and conformed to the investigative protocol using non probability convenient sampling technique, and subjected to both ABR and ASSR for comparative purposes. Correlations were calculated between the thresholds obtained by ABR and ASSR. Results: N=32 children (64 ears) with male female ratio of 2.2:1 and mean age of 33.50±17.73 months were tested with ABR and ASSR for hearing thresholds and correlation coefficient between 2KHz, 4KHz ASSR and average of both with ABR was calculated to be 0.92 and 0.90 and 0.94 respectively. Conclusion: ASSR provides additional frequency specific hearing threshold estimation compared to C-ABR, essentially required for proper setting of amplification devices. 


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Marina Saiz-Alía ◽  
Antonio Elia Forte ◽  
Tobias Reichenbach

Abstract People with normal hearing thresholds can nonetheless have difficulty with understanding speech in noisy backgrounds. The origins of such supra-threshold hearing deficits remain largely unclear. Previously we showed that the auditory brainstem response to running speech is modulated by selective attention, evidencing a subcortical mechanism that contributes to speech-in-noise comprehension. We observed, however, significant variation in the magnitude of the brainstem’s attentional modulation between the different volunteers. Here we show that this variability relates to the ability of the subjects to understand speech in background noise. In particular, we assessed 43 young human volunteers with normal hearing thresholds for their speech-in-noise comprehension. We also recorded their auditory brainstem responses to running speech when selectively attending to one of two competing voices. To control for potential peripheral hearing deficits, and in particular for cochlear synaptopathy, we further assessed noise exposure, the temporal sensitivity threshold, the middle-ear muscle reflex, and the auditory-brainstem response to clicks in various levels of background noise. These tests did not show evidence for cochlear synaptopathy amongst the volunteers. Furthermore, we found that only the attentional modulation of the brainstem response to speech was significantly related to speech-in-noise comprehension. Our results therefore evidence an impact of top-down modulation of brainstem activity on the variability in speech-in-noise comprehension amongst the subjects.


Author(s):  
M.J. Taylor ◽  
B. Rosenblatt ◽  
L. Linschoten

SUMMARY:In an attempt to clarify issues of brainstem dysfunction and hearing thresholds in autistic children, we studied the Auditory Brainstem Responses (ABRs) in 32 children who clearly fit within the criteria of autism established by the National Society for Autistic Children (1977). ABRs were recorded between Cz and ipsilateral ear in response to click stimuli. Interwave latencies and auditory threshold in each ear were determined. Of the 32 children, 11 had moderate hearing loss (8 bilaterally) and 3 had severe to profound hearing loss, all bilaterally. 8 of the 14 with hearing loss also had associated features (e.g., perinatal encephalopathy). The I-III andI-Vinterwave latencies were significantly longer in the autistic children compared to normal control children; the increased conduction times were found mainly in the early portion of the auditory brainstem pathway. These data confirm some earlier reports of ABR abnormalities in autistic children and are concordant with some theories of the etiological basis of autism. The high incidence of hearing loss in these children is significant and routine ABR testing is recommended.


2019 ◽  
Vol 28 (1) ◽  
pp. 114-124
Author(s):  
Linda W. Norrix ◽  
Julie Thein ◽  
David Velenovsky

Purpose Low residual noise (RN) levels are critically important when obtaining electrophysiological recordings of threshold auditory brainstem responses. In this study, we examine the effectiveness and efficiency of Kalman-weighted averaging (KWA) implemented on the Vivosonic Integrity System and artifact rejection (AR) implemented on the Intelligent Hearing Systems SmartEP system for obtaining low RN levels. Method Sixteen adults participated. Electrophysiological measures were obtained using simultaneous recordings by the Vivosonic and Intelligent Hearing Systems for subjects in 2 relaxed conditions and 4 active motor conditions. Three averaging times were used for the relaxed states (1, 1.5, and 3 min) and for the active states (1.5, 3, and 6 min). Repeated-measures analyses of variance were used to examine RN levels as a function of noise reduction strategy (i.e., KWA, AR) and averaging time. Results Lower RN levels were obtained using KWA than AR in both the relaxed and active motor states. Thus, KWA was more effective than was AR under the conditions examined in this study. Using KWA, approximately 3 min of averaging was needed in the relaxed condition to obtain an average RN level of 0.025 μV. In contrast, in the active motor conditions, approximately 6 min of averaging was required using KWA. Mean RN levels of 0.025 μV were not attained using AR. Conclusions When patients are not physiologically quiet, low RN levels are more likely to be obtained and more efficiently obtained using KWA than AR. However, even when using KWA, in active motor states, 6 min of averaging or more may be required to obtain threshold responses. Averaging time needed and whether a low RN level can be attained will depend on the level of motor activity exhibited by the patient.


2020 ◽  
Vol 63 (11) ◽  
pp. 3877-3892
Author(s):  
Ashley Parker ◽  
Candace Slack ◽  
Erika Skoe

Purpose Miniaturization of digital technologies has created new opportunities for remote health care and neuroscientific fieldwork. The current study assesses comparisons between in-home auditory brainstem response (ABR) recordings and recordings obtained in a traditional lab setting. Method Click-evoked and speech-evoked ABRs were recorded in 12 normal-hearing, young adult participants over three test sessions in (a) a shielded sound booth within a research lab, (b) a simulated home environment, and (c) the research lab once more. The same single-family house was used for all home testing. Results Analyses of ABR latencies, a common clinical metric, showed high repeatability between the home and lab environments across both the click-evoked and speech-evoked ABRs. Like ABR latencies, response consistency and signal-to-noise ratio (SNR) were robust both in the lab and in the home and did not show significant differences between locations, although variability between the home and lab was higher than latencies, with two participants influencing this lower repeatability between locations. Response consistency and SNR also patterned together, with a trend for higher SNRs to pair with more consistent responses in both the home and lab environments. Conclusions Our findings demonstrate the feasibility of obtaining high-quality ABR recordings within a simulated home environment that closely approximate those recorded in a more traditional recording environment. This line of work may open doors to greater accessibility to underserved clinical and research populations.


2021 ◽  
Vol 11 (1) ◽  
pp. 38-46
Author(s):  
Fan-Yin Cheng ◽  
Craig A. Champlin

Temporal acuity is the ability to differentiate between sounds based on fluctuations in the waveform envelope. The proximity of successive sounds and background noise diminishes the ability to track rapid changes between consecutive sounds. We determined whether a physiological correlate of temporal acuity is also affected by these factors. We recorded the auditory brainstem response (ABR) from human listeners using a harmonic complex (S1) followed by a brief tone burst (S2) with the latter serving as the evoking signal. The duration and depth of the silent gap between S1 and S2 were manipulated, and the peak latency and amplitude of wave V were measured. The latency of the responses decreased significantly as the duration or depth of the gap increased. The amplitude of the responses was not affected by the duration or depth of the gap. These findings suggest that changing the physical parameters of the gap affects the auditory system’s ability to encode successive sounds.


2019 ◽  
Vol 35 (2) ◽  
Author(s):  
Muhammad Azeem Aslam ◽  
Adeela Javed ◽  
Abdul Moiz

Objectives: To compare the hearing thresholds obtained with auditory brainstem response (ABR) and auditory steady state response (ASSR) audiometry in children with hearing loss. Methods: Hearing thresholds were obtained by ABR and ASSR in children who presented with suspicion of deafness at Ear, nose & throat department of Al-Nafees Medical College Hospital Islamabad, between January to August 2018. The mean hearing thresholds obtained by two tests were compared within each category of severity of deafness. Time taken by both tests was also compared. Results: A total of 57 patients (114 ears) were included in the study. Among them 27 (47.4%) were male and 30 (52.6%) were female. The mean age of patients at presentation was 42 months (±30.9) with age range from one to 12 years. Mean hearing thresholds obtained by click ABR, chirp ABR, ASSR (1, 2, 4 kHz) & ASSR (0.5, 1, 2, 4 kHz) was 56.25 (±27.61), 58.88 (±27.44), 58.03 (±21.26) & 56.35 (±22.86) respectively. Mean thresholds were comparable between click ABR & ASSR (1, 2, 4 kHz) and between chirp ABR & ASSR (0.5, 1, 2, 4 kHz) in all degrees of hearing loss categories except in those patients with normal hearing thresholds. The mean time taken by clicks ABR, chirp ABR and ASSR were four minutes seven seconds, three minutes 15 seconds and 16 minutes and 7 seconds respectively. Conclusions: Hearing thresholds obtained by ABR and ASSR are comparable in all categories of severity of hearing loss. The time taken by ABR is less as compared to ASSR. How to cite this:Aslam MA, Javed A, Moiz A. Comparison of auditory brainstem response and auditory steady state response audiometry by evaluating the hearing thresholds obtained in children with different severity of hearing loss. Pak J Med Sci. 2019;35(2):---------.   doi: https://doi.org/10.12669/pjms.35.2.688 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


PEDIATRICS ◽  
1989 ◽  
Vol 83 (3) ◽  
pp. 385-392
Author(s):  
Steven J. Kramer ◽  
Dianne R. Vertes ◽  
Marie Condon

Auditory brainstem response (ABR) evaluations were performed on 667 high-risk infants from an infant special care unit. Of these infants, 82% passed the ABR. Those infants who failed the ABR were classified into two groups, those who failed at 30 dB hearing level and those who failed at 45 dB hearing level. All of the infants were encouraged to return for otologic/audiologic follow-up in 1, 3, or 6 months, depending on the initial ABR results. All of the infants with severe hearing impairments came from the group who failed at 45 dB hearing level. The incidence of severe sensorineural hearing impairment in this population was estimated to be 2.4%. For the group that failed at 30 dB hearing level, 80% of those who were abnormal at follow-up were considered to have conductive hearing disorders and 20% had mild sensorineural hearing impairments. In addition, infants enrolled in a parent-infant program for hearing impaired by 6 months of age were from the ABR program; however, several infants entered the parent-infant program at a relatively late age because they did not meet the high-risk criteria, they were from other hospitals, or they were not detected by the ABR program.


2019 ◽  
Vol 205 (6) ◽  
pp. 847-854 ◽  
Author(s):  
Tongliang Wang ◽  
Handong Li ◽  
Jianguo Cui ◽  
Xiaofei Zhai ◽  
Haitao Shi ◽  
...  

Abstract Hearing sensitivity is of general interest from the perspective of understanding the functionality and evolution of vertebrate auditory systems. Sexual dimorphism of auditory systems has been reported in several species of vertebrates, but little is known about this phenomenon in turtles. Some morphological characteristics, such as middle ear and tympanic membrane that influence the hearing sensitivity of animals can result in hearing sexual dimorphism. To examine whether sexual dimorphism in hearing sensitivity occurs in turtles and to compare hearing characteristics with respect to the shape of the tympanic membrane, we measured the hearing sensitivity and tympanum diameter in both sexes of Trachemys scripta elegans. The results showed that, with the exception of 0.9 kHz, auditory brainstem response thresholds were significantly lower in females than in males for frequencies in the 0.2–1.1 kHz range, indicating that the hearing of females shows greater sensitivity. No significant differences were detected in the tympanum diameter of both sexes. These results showed that sexually dimorphic hearing sensitivity has evolved in turtles; however, this difference does not appear to be related to differences in the size of the tympanic membrane. The possible origin and function of the sexual differences in auditory characteristic are discussed.


Sign in / Sign up

Export Citation Format

Share Document