scholarly journals Influence of Framework Material and Posterior Implant Angulation in Full-Arch All-on-4 Implant-Supported Prosthesis Stress Concentration

2022 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
João Paulo Mendes Tribst ◽  
Dayana Campanelli de Morais ◽  
Jefferson David Melo de Matos ◽  
Guilherme da Rocha Scalzer Lopes ◽  
Amanda Maria de Oliveira Dal Piva ◽  
...  

This study evaluated the influence of distal implants angulation and framework material in the stress concentration of an All-on-4 full-arch prosthesis. A full-arch implant-supported prosthesis 3D model was created with different distal implant angulations and cantilever arms (30° with 10-millimeter cantilever; 45° with 10-millimeter cantilever and 45° with 6-millimeter cantilever) and framework materials (Cobalt–chrome [CoCr alloy], Yttria-stabilized tetragonal zirconia polycrystal [Y-TZP] and polyetheretherketone [PEEK]). Each solid was imported to computer-aided engineering software, and tetrahedral elements formed the mesh. Material properties were assigned to each solid with isotropic and homogeneous behavior. The contacts were considered bonded. A vertical load of 200 N was applied in the distal region of the cantilever arm, and stress was evaluated in Von Misses (σVM) for prosthesis components and the Maximum (σMAX) and Minimum (σMIN) Principal Stresses for the bone. Distal implants angled in 45° with a 10-millimeter cantilever arm showed the highest stress concentration for all structures with higher stress magnitudes when the PEEK framework was considered. However, distal implants angled in 45° with a 6-millimeter cantilever arm showed promising mechanical responses with the lowest stress peaks. For the All-on-4 concept, a 45° distal implants angulation is only beneficial if it is possible to reduce the cantilever’s length; otherwise, the use of 30° should be considered. Comparing with PEEK, the YTZP and CoCr concentrated stress in the framework structure, reducing the stress in the prosthetic screw.

2009 ◽  
Vol 186 (1) ◽  
pp. 128-132 ◽  
Author(s):  
Kongfa Chen ◽  
Yanting Tian ◽  
Zhe Lü ◽  
Na Ai ◽  
Xiqiang Huang ◽  
...  

2001 ◽  
Vol 16 (7) ◽  
pp. 2158-2169 ◽  
Author(s):  
B. Basu ◽  
J. Vleugels ◽  
O. Van Der Biest

The objective of the present article is to study the influence of TiB2 addition on the transformation behavior of yttria stabilized tetragonal zirconia polycrystals (Y-TZP). A range of TZP(Y)–TiB2 composites with different zirconia starting powder grades and TiB2 phase contents (up to 50 vol%) were processed by the hot-pressing route. Thermal expansion data, as obtained by thermo-mechanical analysis were used to assess the ZrO2 phase transformation in the composites. The thermal expansion hysteresis of the transformable ceramics provides information concerning the transformation behavior in the temperature range of the martensitic transformation and the low-temperature degradation. Furthermore, the transformation behavior and susceptibility to low-temperature degradation during thermal cycling were characterized in terms of the overall amount and distribution of the yttria stabilizer, zirconia grain size, possible dissolution of TiB2 phase, and the amount of residual stress generated in the Y-TZP matrix due to the addition of titanium diboride particles. For the first time, it is demonstrated in the present work that the thermally induced phase transformation of tetragonal zirconia in the Y-TZP composites can be controlled by the intentional addition of the monoclinic zirconia particles into the 3Y-TZP matrix.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 610
Author(s):  
Hee-Kyung Kim ◽  
Byungmin Ahn

This study investigated the effect of sandblasting particle size on the surface topography and compressive stresses of conventional zirconia (3 mol% yttria-stabilized tetragonal zirconia polycrystal; 3Y-TZP) and two highly translucent zirconia (4 or 5 mol% partially stabilized zirconia; 4Y-PSZ or 5Y-PSZ). Plate-shaped zirconia specimens (14.0 × 14.0 × 1.0 mm3, n = 60 for each grade) were sandblasted using different Al2O3 sizes (25, 50, 90, 110, and 125 μm) under 0.2 MPa for 10 s/cm2 at a 10 mm distance and a 90° angle. The surface topography was characterized using a 3-D confocal laser microscopy and inspected with a scanning electron microscope. To assess residual stresses, the tetragonal peak shift at 147 cm−1 was traced using micro-Raman spectroscopy. Al2O3 sandblasting altered surface topographies (p < 0.05), although highly translucent zirconia showed more pronounced changes compared to conventional zirconia. 5Y-PSZ abraded with 110 μm sand showed the highest Sa value (0.76 ± 0.12 μm). Larger particle induced more compressive stresses for 3Y-TZP (p < 0.05), while only 25 μm sand induced residual stresses for 5Y-PSZ. Al2O3 sandblasting with 110 μm sand for 3Y-TZP, 90 μm sand for 4Y-PSZ, and 25 μm sand for 5Y-PSZ were considered as the recommended blasting conditions.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4430 ◽  
Author(s):  
Jingming Zhu ◽  
Jun Luo ◽  
Yuanzun Sun

The superior fracture toughness of zirconia is closely correlated with stress-induced martensitic phase transformation around a crack tip. In this study, a modified phase field (PF) model coupling phase transformation and fracture is proposed to study the fracture behavior and toughening effect of tetragonal zirconia polycrystal (TZP). The stress-induced tetragonal to monoclinic (t–m) phase transformation around a static or propagating crack is characterized with PF simulations. It is shown that the finite size and shape of the transformation zone under different loads and ambient temperatures can be well predicted with the proposed PF model. The phase transformation may decrease the stress level around the crack tip, which implies the toughening effect. After that, crack propagation in TZP is studied. As the stress field is perturbed by the phase transformation patterns, the crack may experience deflection and branching in the propagation process. It is found that the toughness of the grain boundaries (GBs) has important influences on the crack propagation mode. For TZP with strong GBs, the crack is more likely to propagate transgranularly while, for TZP with weak GBs, intergranular crack propagation is prevalent. Besides that, the crystal orientation and the external load can also influence the topology of crack propagation.


Sign in / Sign up

Export Citation Format

Share Document