scholarly journals Assessment of Tooth Preparations Submitted to Dental Laboratories for Fabrication of Monolithic Zirconia Crowns

2021 ◽  
Vol 9 (10) ◽  
pp. 112
Author(s):  
Ramtin Sadid-Zadeh ◽  
Hadjer Sahraoui ◽  
Brian Lawson ◽  
Robert Cox

Purpose: The objective of this study was to assess the quality of posterior teeth prepared for monolithic zirconia crowns. Materials and Methods: A total of 392 STL-files of posterior preparations for monolithic zirconia crowns were evaluated in this study. Three-dimensional (3D) images were evaluated using a software (3D Viewer; 3Shape A/S, Copenhagen, Denmark) for finish line design, finish line width, occluso-cervical dimension, total occlusal convergence (TOC), intercuspal angulation, finish line quality, line angle form, and presence or absence of undercut at the axial wall and unsupported lip of enamel. The assessment was performed by two calibrated evaluators. Then, data were descriptively analyzed. Data for occluso-cervical dimension and TOC were descriptively analyzed according to their location. Results: Thirty-nine percent of premolars, 77% of first molars, and 91% of second molars had an average occluso-cervical dimension of less than 3 mm (premolars) and 4 mm (molars), with most of the preparations having a TOC of more than 20 degrees. More than 50% of preparations had undercut, unsupported enamel and/or unacceptable finish line quality. Conclusions: The quality of tooth preparation including finish line quality, absence of unsupported enamel and undercut at the axial wall should be evaluated when preparing monolithic zirconia crowns.

2020 ◽  
Vol 23 (3) ◽  
Author(s):  
Mohamed Eldamaty ◽  
Mohammed Abdel-Aziz ◽  
Ahmed El-Kouedi ◽  
Tamer Hamza

Objective: The purpose of this study was to evaluate the effect of finish line design and cement space thickness on the marginal accuracy of monolithic zirconia crowns. Materials and methods: Thirty crowns were fabricated from translucent zirconia (inCoris TZI) using Cerec in-Lab system and divided into three main groups (10 each) according to the finish line type of the die (knife-edge, chamfer, and shoulder). Every group was divided into two subgroups (5 each) according to cement space thickness (20 and50μm). Optical impressions were taken for the dies using the Cerec scanner and cement space was set twice for every finish line design; 20 and 50 μm. The completed crowns were cemented to the dies and the marginal gap was evaluated. The collected data was statistically analyzed using Mann-Whitney U test and Kruskal-Wallis test and the significance level was set at P ≤ 0.05. Results: Regarding the marginal gap; there was no statistically significant difference between different finish line designs or between different cement space thicknesses. Conclusion: Neither finish line design nor cement space thickness has an effect on the marginal gap of inCoris TZI crowns.KeywordsCement space; Finish line; Marginal fit; Monolithic zirconia.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Zhenyu Tang ◽  
Xinyi Zhao ◽  
Hui Wang

Abstract Background The present study aimed to quantitate the wear of the highly transparent Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) ceramic monolithic zirconia crown on the enamel in vivo and discuss the prone position of the wear and the underlying mechanism. Methods A total of 43 patients with 43 posterior teeth were selected for full zirconia crown restoration and examined immediately, at 6 months, and at 1 year after restoration. During the follow-up visit, the fine impression of the patients’ monolithic zirconia crowns, the antagonist teeth, the corresponding contralateral natural teeth, the super plaster cast, and epoxy resin model was ontained. The model of epoxy resin was observed under a stereo microscope, and the microstructure parts were observed under a scanning electron microscope. Results After 1 year, the mean depth and volume of wearing of the monolithic zirconia crown were the smallest (all P < 0.01), while those of the antagonist teeth were significantly larger than those of the natural teeth (P < 0.0001), and no significant difference was found among the natural teeth (P = 0.3473, P = 0.6996). The amount of wear after one year was remarkably higher than that at 6 months (P < 0.0001). The microscopic observation revealed the tendency of wearing of the monolithic zirconia crown on the antagonist teeth at the protruding early contact points. Electron micrographs of tooth scars showed that the wearing mechanism of the monolithic zirconia crown on natural teeth was mainly abrasive and fatigue wear. Conclusions Although the self-wearing is insignificant, the monolithic zirconia crown can cause wear of the antagonist teeth via occlusal or early contact significantly; the amount of wearing is higher than that of natural teeth and increases over time. The wearing mechanism is mainly abrasive and fatigue wear.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Keunbada Son ◽  
Young-Tak Son ◽  
Ji-Min Lee ◽  
Kyu-Bok Lee

AbstractThis study evaluated the marginal and internal fit and intaglio surface trueness of interim crowns fabricated from tooth preparation scanned at four finish line locations. The right maxillary first molar tooth preparation model was fabricated using a ceramic material and placed in four finish line locations (supragingival, equigingival, subgingival, and subgingival with a cord). Intraoral scanning was performed. Crowns were designed based on the scanned area. Interim crowns were fabricated using a stereolithography three-dimensional (3D) printer (N = 16 per location). Marginal and internal fit were evaluated with a silicone replica technique. Intaglio surface trueness was evaluated using a 3D inspection software. One-way analysis of variance and Tukey HSD test were performed for comparisons (α = 0.05). The marginal and internal fit showed significant differences according to locations (P < 0.05); the marginal fit showed the best results in the supragingival finish line (P < 0.05). Intaglio surface trueness was significantly different in the marginal region, with the highest value in the subgingival location (P < 0.05). Crowns fabricated on the subgingival finish line caused inaccurate marginal fit due to poor fabrication reproducibility of the marginal region. The use of an intraoral scanner should be decided on the clinical situation and needs.


2019 ◽  
Vol 43 (4) ◽  
pp. 231-238 ◽  
Author(s):  
Hyeonjong Lee ◽  
Yong Kwon Chae ◽  
Hyo-Seol Lee ◽  
Sung Chul Choi ◽  
Ok Hyung Nam

Objectives: This study was designed to compare the surface morphologies and volumes of posterior prefabricated zirconia crowns and posterior stainless steel crowns (SSCs) using digitalized three-dimensional (3D) reconstructed images. Study design: We tested prefabricated zirconia crowns (NuSmile ZR; Orthodontic Technologies, Houston, TX, USA) and SSCs (Kids Crown; Shinhung, Seoul, Korea) used to restore left maxillary and mandibular molars. A Rainbow scanner (Dentium, Seoul, Korea) was used to digitise the inner and outer surface morphologies of all crowns. The data were superimposed and evaluated using 3D software. The differences between the outer and inner surfaces and inner volume were measured. Results: The differences between the two types of crowns differed by tooth surface. At the occlusal surface, the differences were greater at the cusp tip than the fossa. At the axial level, the differences decreased toward the gingival margins. Also, relative volumetric ratios varied. Conclusions: Tooth preparation prior to placement of prefabricated zirconia crowns requires special consideration. Greater amounts of tooth reduction are necessary for posterior zirconia crowns than for SSCs. The occlusal surface requires more tooth reduction than the axial surface and the gingival margin.


2020 ◽  
Vol 64 (4) ◽  
pp. 478-484 ◽  
Author(s):  
Rong Li ◽  
Hu Chen ◽  
Yong Wang ◽  
Yongsheng Zhou ◽  
Zhijian Shen ◽  
...  

2020 ◽  
Vol 14 (02) ◽  
pp. 245-249
Author(s):  
Haider Hasan Jasim ◽  
Meelad Basil Findakly ◽  
Nada Ali Mahdi ◽  
Mustafa Tariq Mutar

Abstract Objectives The aim of this study was to compare the effects of two margin designs (shoulderless and slight chamfer) with two occlusal thicknesses on fracture resistance and failure mode of the monolithic zirconia crowns. Materials and Methods Forty nickel–chromium dies were duplicated from the previous two prepared teeth using a three-dimensional optical scanner. Nickel–chromium supporting dies were divided into two main groups (n = 20) according to the type of margin design: group A, slight chamfer margin design and group B, shoulderless margin design. These groups were further divided into two subgroups according to the occlusal thicknesses (0.5 and 1 mm). The digital imaging of each die was done using a three-dimensional optical scanner, then zirconia blocks were milled by 5-axis machine. The crowns were cleaned by alcohol, air dried, and cemented by resin cement. Next, the crowns were subjected to 500 hot and cold cycles (30 seconds for each cycle). The samples were subjected to a static load until failure using an electronic universal testing machine and fracture resistance was recorded in Newton (N). Statistical Analysis Data were analyzed using the test of normality (Shapiro–Wilk test) and two-way analysis of variance (ANOVA) test. Results  The highest mean fracture load was recorded by the shoulderless (1 mm occlusal thickness) subgroup (3,992.5 N), followed by shoulderless (0.5 mm occlusal thickness) subgroup (3,244.4 N), and the slight chamfer (1 mm occlusal thickness) subgroup (2,811 N). The lowest mean of fracture load was recorded by slight chamfer (0.5 mm occlusal thickness) subgroup (1,632.9 N). The two-way ANOVA test revealed a significant difference between the four subgroups. Regarding the fracture mode, the slight chamfer subgroups showed a severe fracture of the restoration while the shoulderless subgroups showed a fracture through the midline of the restoration. Conclusion Within the limitation of the comparative study, shoulderless margin design has a more favorable outcome than a slight chamfer design in all thicknesses. Although the restoration with reduced occlusal thickness has lower fracture resistance than 1 mm occlusal thickness, the 0.5 mm restorations still can tolerate occlusal forces.


Author(s):  
Ho Yeon Kang ◽  
Hyeonjong Lee ◽  
Yong Kwon Chae ◽  
Seoung-Jin Hong ◽  
Yun Yeong Jeong ◽  
...  

This study evaluated the feasibility of a tooth preparation guide for prefabricated zirconia crowns (PZCs). Three-dimensional surface data for PZCs of the left maxillary primary first molar and left mandibular primary second molar were obtained using a model scanner. The tooth preparation data were digitally designed to harmonize with the adjacent teeth on the mixed dentition model and visualized using a color-coded map, which presents the required amount of tooth reduction. Twenty participants were recruited for preparing teeth with and without using the tooth preparation guide. The following three parameters were evaluated: tooth preparation time, harmony score, and amount of tooth reduction. The preparation time when using the guide was significantly reduced (p < 0.05), and a significant difference was observed in the harmony scores for the maxillary primary first molar preparation. Furthermore, the amount of tooth reduction was significantly different for both maxillary and mandibular primary molars (p < 0.05) in terms of the occlusal distal surface and buccal line angle in the maxillary primary first molars, and the smooth surfaces, proximal surfaces, and mesial line angles in the mandibular primary second molars. Thus, the results suggest that a tooth preparation guide could facilitate better tooth preparation for PZCs.


Sign in / Sign up

Export Citation Format

Share Document