scholarly journals A Method for Selecting Strategic Deployment Opportunities for Unmanned Aircraft Systems (UAS) for Transportation Agencies

Drones ◽  
2020 ◽  
Vol 4 (3) ◽  
pp. 29
Author(s):  
Sarah Hubbard ◽  
Bryan Hubbard

Unmanned aircraft systems (UAS) are increasingly used for a variety of applications by state Departments of Transportation (DOT) and local transportation agencies due to technology advancements, lower costs, and regulatory changes that have simplified operations. There are numerous applications (e.g., bridge inspection, traffic management, incident response, construction and roadway mapping) and agencies find it challenging to prioritize which applications are most appropriate. Important factors to consider when prioritizing UAS applications include: (1) benefits, (2) ease of adoption, (3) stakeholder acceptance, and (4) technical feasibility. These factors can be evaluated utilizing various techniques such as the technology acceptance model, benefit analysis, and technology readiness level (TRL). This paper presents the methodology and results for the prioritization of UAS applications’ quality function deployment (QFD), which reflects both qualitative and quantitative components. The proposed framework can be used in the future as technologies mature, and the prioritization can be revised on a regular basis to identify future strategic implementation opportunities. Numerous transportation agencies have begun to use UAS, some have developed UAS operating policies and manuals, but there has been no documentation to support identification of the UAS applications that are most appropriate for deployment. This paper fills that gap and documents a method for identification of UAS applications for strategic deployment and illustrates the method with a case study.

2021 ◽  
pp. 1-30
Author(s):  
F. D. Maia ◽  
J. M. Lourenço da Saúde

ABSTRACT A state-of-the-art review of all the developments, standards and regulations associated with the use of major unmanned aircraft systems under development is presented. Requirements and constraints are identified by evaluating technologies specific to urban air mobility, considering equivalent levels of safety required by current and future civil aviation standards. Strategies, technologies and lessons learnt from remotely piloted aviation and novel unmanned traffic management systems are taken as the starting point to assess operational scenarios for autonomous urban air mobility.


Aerospace ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 154
Author(s):  
Nichakorn Pongsakornsathien ◽  
Suraj Bijjahalli ◽  
Alessandro Gardi ◽  
Angus Symons ◽  
Yuting Xi ◽  
...  

Recent evolutions of the Unmanned Aircraft Systems (UAS) Traffic Management (UTM) concept are driving the introduction of new airspace structures and classifications, which must be suitable for low-altitude airspace and provide the required level of safety and flexibility, particularly in dense urban and suburban areas. Therefore, airspace classifications and structures need to evolve based on appropriate performance metrics, while new models and tools are needed to address UTM operational requirements, with an increasing focus on the coexistence of manned and unmanned Urban Air Mobility (UAM) vehicles and associated Communication, Navigation and Surveillance (CNS) infrastructure. This paper presents a novel airspace model for UTM adopting Performance-Based Operation (PBO) criteria, and specifically addressing urban airspace requirements. In particular, a novel airspace discretisation methodology is introduced, which allows dynamic management of airspace resources based on navigation and surveillance performance. Additionally, an airspace sectorisation methodology is developed balancing the trade-off between communication overhead and computational complexity of trajectory planning and re-planning. Two simulation case studies are conducted: over the skyline and below the skyline in Melbourne central business district, utilising Global Navigation Satellite Systems (GNSS) and Automatic Dependent Surveillance-Broadcast (ADS-B). The results confirm that the proposed airspace sectorisation methodology promotes operational safety and efficiency and enhances the UTM operators’ situational awareness under dense traffic conditions introducing a new effective 3D airspace visualisation scheme, which is suitable both for mission planning and pre-tactical UTM operations. Additionally, the proposed performance-based methodology can accommodate the diversity of infrastructure and vehicle performance requirements currently envisaged in the UTM context. This facilitates the adoption of this methodology for low-level airspace integration of UAS (which may differ significantly in terms of their avionics CNS capabilities) and set foundations for future work on tactical online UTM operations.


2020 ◽  
Vol 12 (19) ◽  
pp. 3112
Author(s):  
Michael Hatfield ◽  
Catherine Cahill ◽  
Peter Webley ◽  
Jessica Garron ◽  
Rebecca Beltran

Over the past decade Unmanned Aircraft Systems (UAS, aka “drones”) have become pervasive, touching virtually all aspects of our world. While UAS offer great opportunity to better our lives and strengthen economies, at the same time these can significantly disrupt manned flight operations and put our very lives in peril. Balancing the demanding and competing requirements of safely integrating UAS into the United States (US) National Airspace System (NAS) has been a top priority of the Federal Aviation Administration (FAA) for several years. This paper outlines efforts taken by the FAA and the National Aeronautics and Space Administration (NASA) to create the UAS Traffic Management (UTM) system as a means to address this capability gap. It highlights the perspectives and experiences gained by the University of Alaska Fairbanks (UAF) Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) as one of the FAA’s six UAS test sites participating in the NASA-led UTM program. The paper summarizes UAF’s participation in the UTM Technical Capability Level (TCL1-3) campaigns, including flight results, technical capabilities achieved, lessons learned, and continuing challenges regarding the implementation of UTM in the NAS. It also details future efforts needed to enable practical Beyond-Visual-Line-of-Sight (BVLOS) flights for UAS operations in rural Alaska.


Author(s):  
Arwa S. Aweiss ◽  
Brandon D. Owens ◽  
Joseph Rios ◽  
Jeffrey R. Homola ◽  
Christoph P. Mohlenbrink

Sign in / Sign up

Export Citation Format

Share Document