scholarly journals Strain Gradient Theory Based Dynamic Mindlin-Reissner and Kirchhoff Micro-Plates with Microstructural and Micro-Inertial Effects

Dynamics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 49-94
Author(s):  
Stylianos Markolefas ◽  
Dimitrios Fafalis

In this study, a dynamic Mindlin–Reissner-type plate is developed based on a simplified version of Mindlin’s form-II first-strain gradient elasticity theory. The governing equations of motion and the corresponding boundary conditions are derived using the general virtual work variational principle. The presented model contains, apart from the two classical Lame constants, one additional microstructure material parameter g for the static case and one micro-inertia parameter h for the dynamic case. The formal reduction of this model to a Kirchhoff-type plate model is also presented. Upon diminishing the microstructure parameters g and h, the classical Mindlin–Reissner and Kirchhoff plate theories are derived. Three points distinguish the present work from other similar published in the literature. First, the plane stress assumption, fundamental for the development of plate theories, is expressed by the vanishing of the z-component of the generalized true traction vector and not merely by the zz-component of the Cauchy stress tensor. Second, micro-inertia terms are included in the expression of the kinetic energy of the model. Finally, the detailed structure of classical and non-classical boundary conditions is presented for both Mindlin–Reissner and Kirchhoff micro-plates. An example of a simply supported rectangular plate is used to illustrate the proposed model and to compare it with results from the literature. The numerical results reveal the significance of the strain gradient effect on the bending and free vibration response of the micro-plate, when the plate thickness is at the micron-scale; in comparison to the classical theories for Mindlin–Reissner and Kirchhoff plates, the deflections, the rotations, and the shear-thickness frequencies are smaller, while the fundamental flexural frequency is higher. It is also observed that the micro-inertia effect should not be ignored in estimating the fundamental frequencies of micro-plates, primarily for thick plates, when plate thickness is at the micron scale (strain gradient effect).

2018 ◽  
Vol 25 (3) ◽  
pp. 439-451
Author(s):  
Meisam Mohammadi ◽  
Afshin Iranmanesh ◽  
Seyed Sadegh Naseralavi ◽  
Hamed Farahmand

Abstract In the present article, static analysis of thin functionally graded micro-plates, based on Kirchhoff plate theory, is investigated. Utilizing the strain gradient theory and principle of minimum total potential energy, governing equations of rectangular micro-plates, subjected to distributed load, are explored. In accordance with functionally graded distribution of material properties through the thickness, higher-order governing equations are coupled in terms of displacement fields. Introducing a novel methodology, governing equations are decoupled, with special privilege of solving analytically. These new equations are solved for micro-plates with Levy boundary conditions. It is shown that neutral plane in functionally graded micro-plate is moved from midplane to a new coordinate in thickness direction. It is shown that considering micro-structures effects affects the governing equations and boundary conditions. Finally, the effects of material properties, micro-structures, boundary conditions and dimensions are expounded on the static response of micro-plate. Results show that increasing the length scale parameter and FGM index increases the rigidity of micro-plate. In addition, it is concluded that using classical theories for study of micro-structures leads to inaccurate results.


Author(s):  
Alireza Sheykhi ◽  
Shahrokh Hosseini-Hashemi ◽  
Adel Maghsoudpour ◽  
Shahram E Haghighi

In this study, the nonlinear free vibrations behaviour of nano-truncated conical shells was analysed, using the first-order shear deformable shell model. The analysis took into account the structure size through modified strain gradient theory, and differential quadrature and Fréchet derivative methods in von Kármán-Donnell-type approach to kinematic nonlinearity. The governing equations were obtained, utilizing Hamilton's principle. Partial differential equations plus the non-classical and classical boundary conditions were used to obtain the shells’ equations of motion. Discretizing the boundary conditions and equations of motion were performed based on a generalized differential quadrature analogy. The eigenvalue system was considered based on the harmonic balance technique. The Galerkin and Fréchet derivative approaches were used to determine the nonlinear free vibration behaviour of the carbon nano-cone, which was modelled in the simply- and clamped-supported boundary conditions. Comparisons were made between the findings from the new model versus the couple and classical stress theories, indicating that the classical and modified couple stress theories are distinct representations of modified strain gradient theory. The results also revealed that the degree of hardening of nano-truncated conical shells in the modified strain gradient theory is less than that of modified couple stress and classical theories. This led to a rise in the non-dimensional amplitude and frequency ratios. This study investigated the effect of size on free nonlinear vibrations of nano-truncated conical shells for various apex angles and lengths. Finally, we evaluated and compared our findings versus those reported by previous studies, which confirmed the precision and accuracy of our results.


2020 ◽  
Vol 31 (12) ◽  
pp. 1511-1523
Author(s):  
Mohammad Mahinzare ◽  
Hossein Akhavan ◽  
Majid Ghadiri

In this article, a first-order shear deformable model is expanded based on the nonlocal strain gradient theory to vibration analysis of smart nanostructures under different boundary conditions. The governing equations of motion of rotating magneto-viscoelastic functionally graded cylindrical nanoshell in the magnetic field and corresponding boundary conditions are obtained using Hamilton’s principle. To discretize the equations of motion, the generalized differential quadrature method is applied. The aim of this work is to investigate the effects of the temperature changes, nonlocal parameter, material length scale, viscoelastic coefficient, various boundary conditions, and the rotational speed of this smart structure on natural frequencies of rotating cylindrical nanoshell made of magneto-viscoelastic functionally graded material.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
R. Ansari ◽  
R. Gholami ◽  
S. Ajori

In the current study, the torsional vibration of carbon nanotubes is examined using the strain gradient theory and molecular dynamic simulations. The model developed based on this gradient theory enables us to interpret size effect through introducing material length scale parameters. The model accommodates the modified couple stress and classical models when two or all material length scale parameters are set to zero, respectively. Using Hamilton's principle, the governing equation and higher-order boundary conditions of carbon nanotubes are obtained. The generalized differential quadrature method is utilized to discretize the governing differential equation of the present model along with two boundary conditions. Then, molecular dynamic simulations are performed for a series of carbon nanotubes with different aspect ratios and boundary conditions, the results of which are matched with those of the present strain gradient model to extract the appropriate value of the length scale parameter. It is found that the present model with properly calibrated value of length scale parameter has a good capability to predict the torsional vibration behavior of carbon nanotubes.


2014 ◽  
Vol 23 (5-6) ◽  
pp. 169-176
Author(s):  
Mikhail Guzev ◽  
Chengzhi Qi ◽  
Jiping Bai ◽  
Kairui Li

AbstractEquilibrium equations and boundary conditions of the strain gradient theory in arbitrary curvilinear coordinates have been obtained. Their special form for an axisymmetric plane strain problem is also given.


2014 ◽  
Vol 06 (05) ◽  
pp. 1450060 ◽  
Author(s):  
ALI GHORBANPOUR ARANI ◽  
ABDOLREZA JALILVAND ◽  
REZA KOLAHCHI

Nonlinear vibration and instability of a boron nitride micro-tube (BNMT) conveying ferrofluid under the combined magnetic and electric fields are investigated. Based on Euler–Bernoulli beam (EBB), piezoelasticity strain gradient theory and Hamilton's principle, high order equations of motion are derived for three boundary conditions namely as clamped–clamped (C–C), simply–simply (S–S) and clamped–simply (C–S). The differential quadrature method (DQM) is applied to discretize the motion equations in order to obtain the nonlinear frequency and critical fluid velocity using a direct iterative method. A detailed parametric study is conducted to elucidate the influences of the various boundary conditions, size diameter and magnetic field on vibrational characteristic of BNMT. Numerical results indicate that the effect of magnetic field appears in higher speed of ferrofluid and increases the critical velocity or enlarges the stability region. The results are in good agreement with the previous researches. The results of this study can be used to manufacture smart micro/nano electromechanical systems in advanced biomechanics applications with magnetic and electric fields as parametric controllers.


Sign in / Sign up

Export Citation Format

Share Document