scholarly journals Bayesian Network Modelling of ATC Complexity Metrics for Future SESAR Demand and Capacity Balance Solutions

Entropy ◽  
2019 ◽  
Vol 21 (4) ◽  
pp. 379 ◽  
Author(s):  
Victor Gomez Comendador ◽  
Rosa Arnaldo Valdés ◽  
Manuel Villegas Diaz ◽  
Eva Puntero Parla ◽  
Danlin Zheng

Demand & Capacity Management solutions are key SESAR (Single European Sky ATM Research) research projects to adapt future airspace to the expected high air traffic growth in a Trajectory Based Operations (TBO) environment. These solutions rely on processes, methods and metrics regarding the complexity assessment of traffic flows. However, current complexity methodologies and metrics do not properly take into account the impact of trajectories’ uncertainty to the quality of complexity predictions of air traffic demand. This paper proposes the development of several Bayesian network (BN) models to identify the impacts of TBO uncertainties to the quality of the predictions of complexity of air traffic demand for two particular Demand Capacity Balance (DCB) solutions developed by SESAR 2020, i.e., Dynamic Airspace Configuration (DAC) and Flight Centric Air Traffic Control (FCA). In total, seven BN models are elicited covering each concept at different time horizons. The models allow evaluating the influence of the “complexity generators” in the “complexity metrics”. Moreover, when the required level for the uncertainty of complexity is set, the networks allow identifying by how much uncertainty of the input variables should improve.

Author(s):  
Javier A Pérez-Castán ◽  
Fernando Gómez Comendador ◽  
Álvaro Rodríguez-Sanz ◽  
Rocío Barragán ◽  
Rosa M Arnaldo-Valdés

Continuous climb operation is an operational concept that allows airlines to perform an optimal departing trajectory avoiding air traffic control segregation requirements. This concept implies the design and integration of air traffic flows for the sake of safety performance. This paper designs a new conflict-detection air traffic control tool based on the blocking-area concept, characterises the conflict probability between air traffic flows and assesses the impact of continuous climb operation integration in a terminal manoeuvring area. In this paper, a conflict is set out by the infringement of vertical and longitudinal separation minima and coincides with the probability of air traffic control tool usage. Moreover, this research discusses two different approaches for the conflict-detection air traffic control tool: a static approach considering nominal continuous climb operations and landing trajectories, and a dynamic approach that assesses 105 continuous climb operations and landing trajectories. Finally, the air traffic control tool is implemented using Palma TMA data and proves that out of 11 intersections (between departing and landing routes), solely 4 generate vertical separation infringements. The conflict probability between continuous climb operations and arrivals is less than 10−5. Except for one intersection, that is roughly 10−2, similar to current air traffic control intervention designed levels. Therefore, results conclude the viability of the conflict-detection air traffic control tool and continuous climb operations integration.


2009 ◽  
Vol 62 (4) ◽  
pp. 555-570 ◽  
Author(s):  
Peter Brooker

It is now widely recognised that a paradigm shift in air traffic control concepts is needed. This requires state-of-the-art innovative technologies, making much better use of the information in the air traffic management (ATM) system. These paradigm shifts go under the names of NextGen in the USA and SESAR in Europe, which inter alia will make dramatic changes to the nature of airport operations. A vital part of moving from an existing system to a new paradigm is the operational implications of the transition process. There would be business incentives for early aircraft fitment, it is generally safer to introduce new technologies gradually, and researchers are already proposing potential transition steps to the new system. Simple queuing theory models are used to establish rough quantitative estimates of the impact of the transition to a more efficient time-based – four-dimensional (4D) – navigational and ATM system. Such models are approximate, but they do offer insight into the broad implications of system change and its significant features. 4D-equipped aircraft in essence have a contract with the airport runway – they would be required to turn up at a very precise time – and, in return, they would get priority over any other aircraft waiting for use of the runway. The main operational feature examined here is the queuing delays affecting non-4D-equipped arrivals. These get a reasonable service if the proportion of 4D-equipped aircraft is low, but this can deteriorate markedly for high proportions, and be economically unviable. Preventative measures would be to limit the additional growth of 4D-equipped flights and/or to modify their contracts to provide sufficient space for the non-4D-equipped flights to operate without excessive delays. There is a potential for non-Poisson models, for which there is little in the literature, and for more complex models, e.g. grouping a succession of 4D-equipped aircraft as a batch.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1559
Author(s):  
Gomez Comendador ◽  
Arnaldo Valdés ◽  
Vidosavljevic ◽  
Sanchez Cidoncha ◽  
Zheng

The most relevant SESAR 2020 solutions dealing with future Capacity Management processes are Dynamic Airspace Configuration (DAC) and Flight Centric ATC (FCA). Both concepts, DAC and FCA, rely on traffic flow complexity assessment. For this reason, complexity assessments processes, methods and metrics, become one of the main constraints to deal with the growing demand and increasing airspace capacity. The aim of this work is to identify the influence of trajectories’ uncertainty in the quality of the predictions of complexity of traffic demand and the effectiveness of Demand Capacity Balance (DCB) airspace management processes, in order to overcome the limitations of existing complexity assessment approaches to support Capacity Management processes in a Trajectory-Based Operations (TBO) environment. This paper presents research conducted within COTTON project, sponsored by the SESAR Joint Undertaking and EU’s Horizon 2020 research and innovation program. The main objective is to deliver innovative solutions to maximize the performance of the Capacity Management procedures based on information in a TBO environment.


Author(s):  
Debra G. Jones

Since situation awareness (SA) is vital to the decision process, SA errors can degrade decision making. Many SA errors occur when all the relevant information has been correctly perceived. In these cases, the information's significance is not comprehended, and a representational error occurs. Schema influence this comprehension aspect of SA. This study investigates the impact of information with certain schema related characteristics on SA: (1) schema bizarre information will impact SA more than schema irrelevant information, and (2) schema unexpected information will impact SA more than the absence of schema expected information. Using a high fidelity air traffic control simulation, misinformation was provided to the controller and schema related cues were furnished to indicate the error. The results indicated that (1) schema bizarre cues impacted SA more than schema irrelevant cues and (2) no difference existed between the impact of the absence of schema expected cues and schema unexpected cues. Additionally the results emphasize the difficulty incurred when trying to prevent SA errors.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Erin C. DeCarlo ◽  
Barron J. Bichon

This paper presents the first steps toward managing uncertainty and assessing risk within the national airspace system (NAS) by investigating the impact of uncertainty on “flight plan flexibility” (FPF) – a proposed quantitative measure of an aircraft’s ability to adapt its flight plan due to improbable events. First, an air traffic scenario derived from national flight plan data is simulated with an open source BlueSky air traffic control analysis centered on a busy airport. Next, state-space diagrams derived from the aircraft state parameters (i.e., speeds, altitudes, headings), spatial proximities, and surveillance signals are used to construct the FPF metric. Finally, a probabilistic analysis is used to propagate uncertainty in the aircraft positions through BlueSky to observe the resulting uncertainty in FPF through time. Future work will aggregate individual aircraft safety measures and additional metrics into a single system-wide indicator, transitioning from BlueSky to a gate-to-gate simulation for prognostics, and deriving probabilistic models of epistemic and aleatory sources of uncertainty in the NAS from available data.


Author(s):  
Wei Gao ◽  
Man Liang

Air traffic congestion is caused by the unbalance between increasing traffic demand and saturating capacity. Flight delay not only causes huge economical lost, but also has very negative environmental impact in the whole air transportation system. In order to identify the impact of extended TMA on airport capacity, an airspace capacity assessment method based on augmented cell transmission model was proposed. Firstly, the airspace structure was modeled with points, segments, layers, and cells. Secondly, mixed integer linear programming model was built up with maximum throughput or capacity as the objective function. Finally, genetic algorithm was used to find the optimal result, and the results were validated by comparing with the fast-time simulation results generated by total airspace and airport modeler (TAAM) software. It is found that the proposed method could achieve a relatively accurate result in a much affordable and fast way. The numerical results could be very helpful for air traffic controllers to analyze the dynamic traffic flow entering and exiting TMA, so as to make decisions via reasonable analysis and do planning in advance by referring to the airport capacity.


Sign in / Sign up

Export Citation Format

Share Document