scholarly journals Coded Permutation Entropy: A Measure for Dynamical Changes Based on the Secondary Partitioning of Amplitude Information

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 187
Author(s):  
Huan Kang ◽  
Xiaofeng Zhang ◽  
Guangbin Zhang

An improved permutation entropy (PE) algorithm named coded permutation entropy (CPE) is proposed in this paper to optimize the problems existing in PE based on the secondary partitioning. The principle of CPE algorithm is given, and the performance of it for dynamical change detection is analyzed using synthetic signal, logistic map and Lorenz map. The detection ability of CPE algorithm in different signal-to-noise ratios (SNR) is studied and the algorithm complexity is discussed. The results show that CPE can accurately capture minor feature information and amplify the detection results of dynamical changes compared with PE, weighted permutation entropy (WPE) and amplitude-aware permutation entropy (AAPE), but it has less robustness to noise and requires a higher computation cost than the others. Finally, we use the new algorithm to analyze the rolling bearing fault signals. The application of actual signals illustrates that CPE performs better in detecting abnormal pulse of the rolling bearing when the embedded dimension is small. From all the analyses in this paper, we find that CPE has a better performance for dynamical change detection compared with the other three algorithms when there is a larger repetition rate of permutation pattern in the position sequences.

Author(s):  
Ying Zhang ◽  
Hongfu Zuo ◽  
Fang Bai

There are mainly two problems with the current feature extraction methods used in the electrostatic monitoring of rolling bearings, which affect their abilities to identify early faults: (1) since noises are mixed in the electrostatic signals, it is difficult to extract weak early fault features; (2) traditional time and frequency domain features have limited ability to provide a quantitative indicator of degradation state. With regard to these two problems, a new feature extraction method for rolling bearing fault diagnosis by electrostatic monitoring sensors is proposed in this paper. First, the spectrum interpolation is adopted to suppress the power-frequency interference in the electrostatic signal. Then the resultant signal is used to construct Hankel matrix, the number of useful components is automatically selected based on the difference spectrum of singular values, after that the signal is reconstructed to remove background noises and random pulses. Finally, the permutation entropy of the denoised signal is calculated and smoothed using the exponential weighted moving average method, which is used to be a quantitative indicator of bearing performance state. The simulation and experimental results show that the proposed method can effectively remove noises and significantly bring forward the time when early faults are detected.


2019 ◽  
Vol 9 (13) ◽  
pp. 2743 ◽  
Author(s):  
Dai ◽  
Tang ◽  
Shao ◽  
Huang ◽  
Wang

Effective intelligent fault diagnosis of bearings is important for improving safety and reliability of machine. Benefiting from the training advantages, deep learning method can automatically and adaptively learn more abstract and high-level features without much priori knowledge. To realize representative features mining and automatic recognition of bearing health condition, a diagnostic model of stacked sparse denoising autoencoder (SSDAE) which combines sparse autoencoder (SAE) and denoising autoencoder (DAE) is proposed in this paper. The sparse criterion in SAE, corrupting operation in DAE and reasonable designing of the stack order of autoencoders help to mine essential information of the input and improve fault pattern classification robustness. In order to provide better input features for the constructed network, the raw non-stationary and nonlinear vibration signals are processed with ensemble empirical mode decomposition (EEMD) and multiscale permutation entropy (MPE). MPE features which are extracted based on both the selected characteristic frequency-related intrinsic mode function components (IMFs) and the raw signal, are used as low-level feature for the input of the proposed diagnostic model for health condition recognition and classification. Two experiments based on the Case Western Reserve University (CWRU) dataset and the measurement dataset from laboratory were conducted, and results demonstrate the effectiveness of the proposed method and highlight its excellent performance relative to existing methods.


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 519 ◽  
Author(s):  
Weibo Zhang ◽  
Jianzhong Zhou

Aimed at distinguishing different fault categories of severity of rolling bearings, a novel method based on feature space reconstruction and multiscale permutation entropy is proposed in the study. Firstly, the ensemble empirical mode decomposition algorithm (EEMD) was employed to adaptively decompose the vibration signal into multiple intrinsic mode functions (IMFs), and the representative IMFs which contained rich fault information were selected to reconstruct a feature vector space. Secondly, the multiscale permutation entropy (MPE) was used to calculate the complexity of reconstructed feature space. Finally, the value of multiscale permutation entropy was presented to a support vector machine for fault classification. The proposed diagnostic algorithm was applied to three groups of rolling bearing experiments. The experimental results indicate that the proposed method has better classification performance and robustness than other traditional methods.


Author(s):  
Yoshihide Koyama ◽  
Tetsuo Hattori ◽  
Yoshiro Imai ◽  
Yo Horikawa ◽  
Yusuke Kawakami ◽  
...  

2019 ◽  
Vol 24 (2) ◽  
pp. 303-311 ◽  
Author(s):  
Xiaoxia Zheng ◽  
Guowang Zhou ◽  
Dongdong Li ◽  
Haohan Ren

Rolling bearings are the key components of rotating machinery. However, the incipient fault characteristics of a rolling bearing vibration signal are weak and difficult to extract. To solve this problem, this paper presents a novel rolling bearing vibration signal fault feature extraction and fault pattern recognition method based on variational mode decomposition (VMD), permutation entropy (PE) and support vector machines (SVM). In the proposed method, the bearing vibration signal is decomposed by VMD, and the intrinsic mode functions (IMFs) are obtained in different scales. Then, the PE values of each IMF are calculated to uncover the multi-scale intrinsic characteristics of the vibration signal. Finally, PE values of IMFs are fed into SVM to automatically accomplish the bearing condition identifications. The proposed method is evaluated by rolling bearing vibration signals. The results indicate that the proposed method is superior and can diagnose rolling bearing faults accurately.


Sign in / Sign up

Export Citation Format

Share Document