scholarly journals Performance and Exergy Analyses of a Solar Assisted Heat Pump with Seasonal Heat Storage and Grey Water Heat Recovery Unit

Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 47
Author(s):  
Primož Poredoš ◽  
Boris Vidrih ◽  
Alojz Poredoš

The main research objective of this paper was to compare exergy performance of three different heat pump (HP)-based systems and one natural gas (NG)-based system for the production of heating and cooling energy in a single-house dwelling. The study considered systems based on: 1. A NG and auxiliary cooling unit; 2. Solely HP, 3. HP with additional seasonal heat storage (SHS) and a solar thermal collector (STC); 4. HP with SHS, a STC and a grey water (GW) recovery unit. The assessment of exergy efficiencies for each case was based on the transient systems simulation program TRNSYS, which was used for the simulation of energy use for space heating and cooling of the building, sanitary hot water production, and the thermal response of the seasonal heat storage and solar thermal system. The results show that an enormous waste of exergy is observed by the system based on an NG boiler (with annual overall exergy efficiency of 0.11) in comparison to the most efficient systems, based on HP water–water with a seasonal heat storage and solar thermal collector with the efficiency of 0.47. The same system with an added GW unit exhibits lower water temperatures, resulting in the exergy efficiency of 0.43. The other three systems, based on air–, water–, and ground–water HPs, show significantly lower annual source water temperatures (10.9, 11.0, 11.0, respectively) compared to systems with SHS and SHS + GW, with temperatures of 28.8 and 19.3 K, respectively.

Author(s):  
Md. Habibur Rahaman ◽  
M. Tariq Iqbal

Almost all single-family detached house in Canada consume huge electricity for space heating and domestic hot water (DHW) purposes. There are many possibilities to design an energy-efficient house. A solar water heating system can be used for domestic water and space heating. Water temperature can be kept constant always by connecting a heat pump or oil burner because solar energy is intermittent. Proper and optimized solar photovoltaic and collector design, tank design, heat pump selection, house insulation, total demand calculation in each section are essential. Energy-Efficient house design has been proposed with water heating and space heating system and compared with the existing system, solar PV based systems, and solar collector based system. The tracking and non-tracking based solar thermal collector based and the solar photovoltaic based system has been compared in this paper and investigate the suitable one for practically applicable and acceptable by the people. Simulation has been done by using the PolySun software. It found that by implementing the proposed PV based system with tracking is highly suitable considering lower cost, high output power, flexibility, easy installation.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4057
Author(s):  
Mohammad Emamjome Kashan ◽  
Alan S. Fung ◽  
John Swift

In Canada, more than 80% of energy in the residential sector is used for space heating and domestic hot water (DHW) production. This study aimed to model and compare the performance of four different systems, using solar energy as a renewable energy source for DHW production. A novel microchannel (MC) solar thermal collector and a microchannel-based hybrid photovoltaic/thermal collector (PVT) were fabricated (utilizing a microchannel heat exchanger in both cases), mathematical models were created, and performance was simulated in TRNSYS software. A water-to-water heat pump (HP) was integrated with these two collector-based solar systems, namely MCPVT-HP and MCST-HP, to improve the total solar fraction. System performance was then compared with that of a conventional solar-thermal-collector-based system and that of a PV-resistance (PV-R) system, using a monocrystalline PV collector. The heat pump was added to the systems to improve the systems’ efficiency and provide the required DHW temperatures when solar irradiance was insufficient. Comparisons were performed based on the temperature of the preheated water storage tank, the PV panel efficiency, overall system efficiency, and the achieved solar fraction. The microchannel PVT-heat pump (MCPVT-HP) system has the highest annual solar fraction among all the compared systems, at 76.7%. It was observed that this system had 10% to 35% higher solar fraction than the conventional single-tank solar-thermal-collector-based system during the wintertime in a cold climate. The performance of the two proposed MC-based systems is less sensitive than the two conventional systems to collector tilt angle in the range of 45 degrees to 90 degrees. If roof space is limited, the MCPVT-HP system is the best choice, as the MCPVT collector can perform effectively when mounted vertically on the facades of high-rise residential and commercial buildings. A comparison among five Canadian cities was also performed, and we found that direct beam radiation has a great effect on overall system solar faction.


Proceedings ◽  
2020 ◽  
Vol 65 (1) ◽  
pp. 16
Author(s):  
Andrea Frazzica ◽  
Régis Decorme ◽  
Marco Calderoni ◽  
Alessandra Cuneo ◽  
Zuzana Taťáková ◽  
...  

This workshop brought together a selection of H2020 EU-funded projects involving experts from the biomass, geothermal, solar thermal, and heat pump sectors to discuss a common strategy for increasing the use of renewable energy technologies for heating and cooling for buildings and industry.


Designs ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 44
Author(s):  
Jordi Roviras Miñana ◽  
Vicente Sarrablo Moreno

The work presented here aims to demonstrate the technical, architectural, and energy viability of solar thermal collectors made with ceramic materials and their suitability for domestic hot water (DHW) and building heating systems in the Mediterranean climate. The proposal is for the design of a ceramic shell, formed by collector and non-collecting panels, which forms part of the building system itself, and is capable of responding to the basic requirements of a building envelope and harnessing solar energy. Ceramics considerably reduce the final cost of the collector system and offer the new system a variety of compositional and chromatic finishes, occupying the entire building surface and achieving a high degree of architectural integration, although less energy-efficient compared to a conventional metallic collector.


2021 ◽  
Author(s):  
Kamyar Tanha

This thesis is focused on the performance of the two SDHW systems of the sustainable Archetype houses in Vaughan, Ontario with daily hot water consumption of 225 litres. The first system consists of a flat plate solar thermal collector in conjunction with a gas boiler and a DWHR. The second SDHW system consists of an evacuated tube collector, an electric tank and a DWHR. The experimental results showed that the DWHRs were capable of an annual heat recovery of 789 kWh. The flat plate and evacuated tube collectors had an annual thermal energy output of 2038 kWh and 1383 kWh. The systems were also modeled in TRNSYS and validated with the experimental results. The simulated results showed that Edmonton has the highest annual energy consumption of 3763.4 kWh and 2852.9 kWh by gas boiler and electric tank and that the solar thermal collectors and DWHRs are most beneficial in Edmonton.


2021 ◽  
Author(s):  
Toktam Saeid

In October 2009, Team North competed in the US DOE 2009 Solar Decathlon competition. Team North's mission was to design and deliver North House, an energy efficient solar-powered home while training Canada's next generation of leaders in sustainable design. In North House, the PV system on the roof was the primary energy generation, complimented by a custom PV cladding system on the south, east and west facades. A solar assisted heat pump system, including a three-tank heat transfer and storage system, the horizontally mounted evacuated-tube solar thermal collectors on the roof and a variable capacity heat pump met the hot water and space heating demands. A second variable capacity heat pump was utilized for space cooling. The solar thermal system was studied using TRNSYS simulation. For the initial assessments the simulations were run for Baltimore. Then, the analyses were extended to different cities across Canada. In all scenarios the same house was linked to the system. The minimum annual solar fraction of the different cities was 64% and it rose up to 81%. Finally, the data measured during the competition were analyzed and compared with the data resulting from the simulation. According to competition measures, during the 10 days of competition in Washington DC, the PV system generated 271.6kWh of electricity and the solar thermal system produced 91.7kWh while the house consumption was 294.1kWh. As a result, North House was evidently a net-positive house.


2011 ◽  
Vol 374-377 ◽  
pp. 398-404 ◽  
Author(s):  
Ying Ning Hu ◽  
Ban Jun Peng ◽  
Shan Shan Hu ◽  
Jun Lin

A hot-water and air-conditioning (HWAC) combined ground sourse heat pump(GSHP) system with horizontal ground heat exchanger self-designed and actualized was presented in this paper. The heat transfer performance for the heat exchanger of two different pipe arrangements, three layers and four layers, respectively, was compared. It showed that the heat exchange quantity per pipe length for the pipe arrangement of three layers and four layers are 18.0 W/m and 15.0 W/m. The coefficient of performance (COP) of unit and system could remain 4.8 and 4.2 as GSHP system for heating water, and the COP of heating and cooling combination are up to 8.5 and 7.5, respectively. The power consumption of hot-water in a whole year is 9.0 kwh/t. The economy and feasibility analysis on vertical and horizontal ground heat exchanger were made, which showed that the investment cost per heat exchange quantity of horizontal ground heat exchanger is 51.4% lower than that of the vertical ground heat exchanger, but the occupied area of the former is 7 times larger than the latter's.


2012 ◽  
Vol 238 ◽  
pp. 478-481
Author(s):  
Zhen Qing Wang ◽  
Yan Chen ◽  
Hai Xia Wang

An air source heat pump system (ASHPS) was set up, which provided space heating and cooling, as well as hot water for an office building in Tianjin. Its operating performance in winter was evaluated based on test data. Considering the local abundant solar radiation and the way to provide energy in an office building, a simulation study was carried out on the combsystem of ASHP and flat plate air collector (FPAC). The effects of collector area and its outlet parameters on the heating performance of ASHP were studied, and the favorable operating and matching mode were recommended. The results indicate that ASHPS is a technically viable method in Tianjin in winter, but not economically, and the air-solar combsystem should be taken into account for its massive replacement for conventional energy.


Sign in / Sign up

Export Citation Format

Share Document