scholarly journals A Comparison of Solar Photovoltaic and Solar Thermal Collector for Residential Water Heating and Space Heating System

Author(s):  
Md. Habibur Rahaman ◽  
M. Tariq Iqbal

Almost all single-family detached house in Canada consume huge electricity for space heating and domestic hot water (DHW) purposes. There are many possibilities to design an energy-efficient house. A solar water heating system can be used for domestic water and space heating. Water temperature can be kept constant always by connecting a heat pump or oil burner because solar energy is intermittent. Proper and optimized solar photovoltaic and collector design, tank design, heat pump selection, house insulation, total demand calculation in each section are essential. Energy-Efficient house design has been proposed with water heating and space heating system and compared with the existing system, solar PV based systems, and solar collector based system. The tracking and non-tracking based solar thermal collector based and the solar photovoltaic based system has been compared in this paper and investigate the suitable one for practically applicable and acceptable by the people. Simulation has been done by using the PolySun software. It found that by implementing the proposed PV based system with tracking is highly suitable considering lower cost, high output power, flexibility, easy installation.

2019 ◽  
Vol 4 (12) ◽  
pp. 41-47
Author(s):  
Md. Habibur Rahaman ◽  
Tariq Iqbal

Almost all single-family detached houses in Canada consume enormous electrical energy for space heating and domestic hot water (DHW) purposes. There are many possibilities to design an energy-efficient house. A solar water heating system can be used for domestic water and space heating. Water temperature can be kept constant always by connecting a heat pump or oil burner to the main tank because solar energy is intermittent. The sizing of solar photovoltaic and collector, tank, heat pump are essential to design an effective system based on the system energy consumption. The existing house is just a conventional house where space and water heating are provided by the grid electricity only. In this research, two possible ways of thermal energy storage systems have been designed for a residential single-family house with solar collector and solar photovoltaic. It is proved that the proposed PV based energy storage system is highly suitable considering lower cost, high output power, flexibility, and easy installation.


Author(s):  
Jenny Chu ◽  
Cynthia A. Cruickshank ◽  
Wilkie Choi ◽  
Stephen J. Harrison

Heat pumps are commonly used for residential space-heating and cooling. The combination of solar thermal and heat pump systems as a single solar-assisted heat pump (SAHP) system can significantly reduce residential energy consumption in Canada. As a part of Team Ontario’s efforts to develop a high performance house for the 2013 DOE Solar Decathlon Competition, an integrated mechanical system (IMS) consisting of a SAHP was investigated. The system is designed to provide domestic hot water, space-heating, space-cooling and dehumidification. The system included a cold and a hot thermal storage tank and a heat pump to move energy from the low temperature reservoir, to the hot. The solar thermal collectors supplies heat to the cold storage and operate at a higher efficiency due to the heat pump reducing the temperature of the collector working fluid. The combination of the heat pump and solar thermal collectors allows more heat to be harvested at a lower temperature, and then boosted to a suitable temperature for domestic use via the heat pump. The IMS and the building’s energy loads were modeled using the TRNSYS simulation software. A parametric study was conducted to optimize the control, sizing and configuration of the system. This paper provides an overview of the model and summarizes the results of the study. The simulation results suggested that the investigated system can achieve a free energy ratio of about 0.583 for a high performance house designed for the Ottawa climate.


2014 ◽  
Vol 521 ◽  
pp. 56-59
Author(s):  
Hui Xing Li ◽  
Peng Cheng ◽  
Guo Hui Feng ◽  
Ran Zhang

New energy development and utilization is an important approach to solve the problem of energy shortage,a new type of composite heating system is proposed in this study. It expounds the research ideas, the technical principle and operation plan of the system. Through a comparative analysis of the performance coefficient of composite heating system, reclaimed water source heat pump system and solar hot water heating system, it Comes to the conclusions that the composite heating system can not only reduce the operating cost but also improve the running performance of reclaimed water source heat pump and reduce the heat loss of solar hot water heating system.


2015 ◽  
Vol 121 ◽  
pp. 1544-1555
Author(s):  
Mingzhi Jiang ◽  
Guohui Feng ◽  
Kailiang Huang ◽  
Shibo Liu ◽  
Dong Liang ◽  
...  

Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 47
Author(s):  
Primož Poredoš ◽  
Boris Vidrih ◽  
Alojz Poredoš

The main research objective of this paper was to compare exergy performance of three different heat pump (HP)-based systems and one natural gas (NG)-based system for the production of heating and cooling energy in a single-house dwelling. The study considered systems based on: 1. A NG and auxiliary cooling unit; 2. Solely HP, 3. HP with additional seasonal heat storage (SHS) and a solar thermal collector (STC); 4. HP with SHS, a STC and a grey water (GW) recovery unit. The assessment of exergy efficiencies for each case was based on the transient systems simulation program TRNSYS, which was used for the simulation of energy use for space heating and cooling of the building, sanitary hot water production, and the thermal response of the seasonal heat storage and solar thermal system. The results show that an enormous waste of exergy is observed by the system based on an NG boiler (with annual overall exergy efficiency of 0.11) in comparison to the most efficient systems, based on HP water–water with a seasonal heat storage and solar thermal collector with the efficiency of 0.47. The same system with an added GW unit exhibits lower water temperatures, resulting in the exergy efficiency of 0.43. The other three systems, based on air–, water–, and ground–water HPs, show significantly lower annual source water temperatures (10.9, 11.0, 11.0, respectively) compared to systems with SHS and SHS + GW, with temperatures of 28.8 and 19.3 K, respectively.


Sign in / Sign up

Export Citation Format

Share Document