scholarly journals Improving the Reversible LSB Matching Scheme Based on the Likelihood Re-encoding Strategy

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 577
Author(s):  
Tzu-Chuen Lu ◽  
Ping-Chung Yang ◽  
Biswapati Jana

In 2018, Tseng et al. proposed a dual-image reversible embedding method based on the modified Least Significant Bit matching (LSB matching) method. This method improved on the dual-image LSB matching method proposed by Lu et al. In Lu et al.’s scheme, there are seven situations that cannot be restored and need to be modified. Furthermore, the scheme uses two pixels to conceal four secret bits. The maximum modification of each pixel, in Lu et al.’s scheme, is two. To decrease the modification, Tseng et al. use one pixel to embed two secret bits and allow the maximum modification to decrease from two to one such that the image quality can be improved. This study enhances Tseng et al.’s method by re-encoding the modified rule table based on the probability of each hiding combination. The scheme analyzes the frequency occurrence of each combination and sets the lowest modified codes to the highest frequency case to significantly reduce the amount of modification. Experimental results show that better image quality is obtained using our method under the same amount of hiding payload.

Computers ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 38
Author(s):  
Piotr Artiemjew ◽  
Aleksandra Kislak-Malinowska

Our concern in this paper is to explore the possibility of using rough inclusions for image steganography. We present our initial research using indiscernibility relation as a steganographic key for hiding information into the stego carrier by means of a fixed mask. The information can be embedded into the stego-carrier in a semi-random way, whereas the reconstruction is performed in a deterministic way. The information shall be placed in selected bytes, which are indiscernible with the mask to a fixed degree. The bits indiscernible with other ratios (smaller or greater) form random gaps that lead to somehow unpredictable hiding of information presence. We assume that in our technique it can modify bits, the change of which does not cause a visual modification detectable by human sight, so we do not limit ourselves to the least significant bit. The only assumption is that we do not use the position when the mask we define uses it. For simplicity’s sake, in this work we present its operation, features, using the Least Significant Bit (LSB) method. In the experimental part, we have implemented our method in the context of hiding image into the image. The LSB technique in its simplest form is not resistant to stegoanalisys, so we used the well-known LSB matching method to mask the presence of our steganographic key usage. To verify the resistance to stegoanalisys we have conducted and discussed Chi-square and LSB enhancement test. The positive features of our method include its simplicity and speed, to decode a message we need to hide, or pass to another channel, a several-bit mask, degree of indiscernibility and size of the hidden file. We hope that our method will find application in the art of creating steganographic keys.


2012 ◽  
Vol 546-547 ◽  
pp. 410-415
Author(s):  
Chun Ge Tang ◽  
Tie Sheng Fan ◽  
Lei Liu ◽  
Zhi Hui Li

A new blind digital watermarking algorithm based on the chain code is proposed. The chain code is obtained by the characteristics of the original image -the edge contour. The feather can reflect the overall correlation of the vector image, and chain code expression can significantly reduce the boundary representation of the amount of data required. For the watermarking embedding, the original vector image is divided into sub-block images, and two bits of the watermarking information are embedded into sub-block images repeatedly by quantization. For watermarking extracting, the majority decision method is employed to determine the size of the extracted watermark. Experimental results show that the image quality is not significantly lowered after watermarking. The algorithm can resist the basic conventional attacks and has good robustness on the shear attacks.


2012 ◽  
Vol 6-7 ◽  
pp. 428-433
Author(s):  
Yan Wei Li ◽  
Mei Chen Wu ◽  
Tung Shou Chen ◽  
Wien Hong

We propose a reversible data hiding technique to improve Hong and Chen’s (2010) method. Hong and Chen divide the cover image into pixel group, and use reference pixels to predict other pixel values. Data are then embedded by modifying the prediction errors. However, when solving the overflow and underflow problems, they employ a location map to record the position of saturated pixels, and these pixels will not be used to carry data. In their method, if the image has a plenty of saturated pixels, the payload is decreased significantly because a lot of saturated pixels will not joint the embedment. We improve Hong and Chen’s method such that the saturated pixels can be used to carry data. The positions of these saturated pixels are then recorded in a location map, and the location map is embedded together with the secret data. The experimental results illustrate that the proposed method has better payload, will providing a comparable image quality.


2021 ◽  
Vol 48 (4) ◽  
Author(s):  
Zainab N. Sultani ◽  
◽  
Ban N. Dhannoon ◽  

Hiding the presence of data during communication has become a pressing concern in this overly digitalized world as a consequence of illegitimate access. These concerns have led to cryptography and steganography techniques as methods for securing data. This paper presents a modified information hiding technique based on an indirect least significant bit. Instead of saving each bit of the secret message in the least significant bit (LSB) of the cover media, each bit of the secret message is compared to a mask bit in the cover media. The result is saved in the cover media’s LSB. In this paper, two steganography schemas are designed in which the cover media are image and audio, while the secret message is a text file. A simple encryption technique is used to transform the secret message into an unreadable format before the hiding process begins. The experimental results indicate that the proposed algorithm achieves promising performance


Author(s):  
Youssef Ouadid ◽  
Abderrahmane Elbalaoui ◽  
Mehdi Boutaounte ◽  
Mohamed Fakir ◽  
Brahim Minaoui

<p>In this paper, a graph based handwritten Tifinagh character recognition system is presented. In preprocessing Zhang Suen algorithm is enhanced. In features extraction, a novel key point extraction algorithm is presented. Images are then represented by adjacency matrices defining graphs where nodes represent feature points extracted by a novel algorithm. These graphs are classified using a graph matching method. Experimental results are obtained using two databases to test the effectiveness. The system shows good results in terms of recognition rate.</p>


Author(s):  
Liyang Xiao ◽  
Wei Li ◽  
Ju Huyan ◽  
Zhaoyun Sun ◽  
Susan Tighe

This paper aims to develop a method of crack grid detection based on convolutional neural network. First, an image denoising operation is conducted to improve image quality. Next, the processed images are divided into grids of different, and each grid is fed into a convolutional neural network for detection. The pieces of the grids with cracks are marked and then returned to the original images. Finally, on the basis of the detection results, threshold segmentation is performed only on the marked grids. Information about the crack parameters is obtained via pixel scanning and calculation, which realises complete crack detection. The experimental results show that 30×30 grids perform the best with the accuracy value of 97.33%. The advantage of automatic crack grid detection is that it can avoid fracture phenomenon in crack identification and ensure the integrity of cracks.


Information ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 17 ◽  
Author(s):  
Haidong Zhong ◽  
Xianyi Chen ◽  
Qinglong Tian

Recently, reversible image transformation (RIT) technology has attracted considerable attention because it is able not only to generate stego-images that look similar to target images of the same size, but also to recover the secret image losslessly. Therefore, it is very useful in image privacy protection and reversible data hiding in encrypted images. However, the amount of accessorial information, for recording the transformation parameters, is very large in the traditional RIT method, which results in an abrupt degradation of the stego-image quality. In this paper, an improved RIT method for reducing the auxiliary information is proposed. Firstly, we divide secret and target images into non-overlapping blocks, and classify these blocks into K classes by using the K-means clustering method. Secondly, we match blocks in the last (K-T)-classes using the traditional RIT method for a threshold T, in which the secret and target blocks are paired with the same compound index. Thirdly, the accessorial information (AI) produced by the matching can be represented as a secret segment, and the secret segment can be hided by patching blocks in the first T-classes. Experimental results show that the proposed strategy can reduce the AI and improve the stego-image quality effectively.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Gandharba Swain

The combination of pixel value differencing (PVD) and least significant bit (LSB) substitution gives higher capacity and lesser distortion. However, there are three issues to be taken into account: (i) fall off boundary problem (FOBP), (ii) pixel difference histogram (PDH) analysis, and (iii) RS analysis. This paper proposes a steganography technique in two variants using combination of modified LSB substitution and PVD by taking care of these three issues. The first variant operates on 2 × 3 pixel blocks and the second technique operates on 3 × 3 pixel blocks. In one of the pixels of a block, embedding is performed using modified LSB substitution. Based on the new value of this pixel, difference values with other neighboring pixels are calculated. Using these differences, PVD approach is applied. The edges in multiple directions are exploited, so PDH analysis cannot detect this steganography. The LSB substitution is performed in only one pixel of the block, so RS analysis also cannot detect this steganography. To address the FOBP, suitable equations are used during embedding procedure. The experimental results such as bit rate and distortion measure are satisfactory.


Sign in / Sign up

Export Citation Format

Share Document