scholarly journals Characterization of a Two-Photon Quantum Battery: Initial Conditions, Stability and Work Extraction

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 612
Author(s):  
Anna Delmonte ◽  
Alba Crescente ◽  
Matteo Carrega ◽  
Dario Ferraro ◽  
Maura Sassetti

We consider a quantum battery that is based on a two-level system coupled with a cavity radiation by means of a two-photon interaction. Various figures of merit, such as stored energy, average charging power, energy fluctuations, and extractable work are investigated, considering, as possible initial conditions for the cavity, a Fock state, a coherent state, and a squeezed state. We show that the first state leads to better performances for the battery. However, a coherent state with the same average number of photons, even if it is affected by stronger fluctuations in the stored energy, results in quite interesting performance, in particular since it allows for almost completely extracting the stored energy as usable work at short enough times.

2015 ◽  
Vol 32 (4) ◽  
pp. 545 ◽  
Author(s):  
Thiago Ferreira da Silva ◽  
Gustavo C. do Amaral ◽  
Douglas Vitoreti ◽  
Guilherme P. Temporão ◽  
Jean Pierre von der Weid

2012 ◽  
Vol 102 (3) ◽  
pp. 195a-196a
Author(s):  
Zeno Lavagnino ◽  
Francesca Cella Zanacchi ◽  
Emiliano Ronzitti ◽  
Ivan Coto Hernandez ◽  
Alberto Diaspro

2014 ◽  
Vol 8 (5) ◽  
pp. L76-L80 ◽  
Author(s):  
Andreas Eckstein ◽  
Guillaume Boucher ◽  
Aristide Lemaître ◽  
Pascal Filloux ◽  
Ivan Favero ◽  
...  

Author(s):  
Nicolas Ripoche ◽  
Marie Betou ◽  
Clotilde Philippe ◽  
Yann Trolez ◽  
Olivier Mongin ◽  
...  

The synthesis and characterization of four new tetracyanobutadiene (TCBD) derivatives (1, 3c and 4b-c) incorporating tosylamido and 4-triphenylamino moieties are reported. Along with those of five closely related or differently...


Volume 3 ◽  
2004 ◽  
Author(s):  
Erik D. Svensson

In this work we computationally characterize fluid mixing in a number of passive microfluidic mixers. Generally, in order to systematically study and characterize mixing in realistic fluid systems we (1) compute the fluid flow in the systems by solving the stationary three-dimensional Navier-Stokes equations or Stokes equations with a finite element method, and (2) compute various measures indicating the degree of mixing based on concepts from dynamical systems theory, i.e., the sensitive dependence on initial conditions and mixing variance.


2019 ◽  
Vol 25 (1) ◽  
pp. 164-179
Author(s):  
Ambroise Marin ◽  
Emmanuel Denimal ◽  
Lucie Bertheau ◽  
Stéphane Guyot ◽  
Ludovic Journaux ◽  
...  

AbstractIn the context of microbiology, recent studies show the importance of ribonucleo-protein aggregates (RNPs) for the understanding of mechanisms involved in cell responses to specific environmental conditions. The assembly and disassembly of aggregates is a dynamic process, the characterization of the stage of their evolution can be performed by the evaluation of their number. The aim of this study is to propose a method to automatically determine the count of RNPs. We show that the determination of a precise count is an issue by itself and hence, we propose three textural approaches: a classical point of view using Haralick features, a frequency point of view with generalized Fourier descriptors, and a structural point of view with Zernike moment descriptors (ZMD). These parameters are then used as inputs for a supervised classification in order to determine the most relevant. An experiment using a specific Saccharomyces cerevisiae strain presenting a fusion between a protein found in RNPs (PAB1) and the green fluorescent protein was performed to benchmark this approach. The fluorescence was observed with two-photon fluorescence microscopy. Results show that the textural approach, by mixing ZMD with Haralick features, allows for the characterization of the number of RNPs.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 237-245
Author(s):  
Eman Hilal ◽  
Sadah Alkhateeb ◽  
Sayed Abel-Khalek ◽  
Eied Khalil ◽  
Amjaad Almowalled

We study the interaction of a three two-level atoms with a one-mode optical coherent field in coherent state in the presence of non-linear Kerr medim. The three atoms are initially prepared in upper and entangled states while the field mode is in a coherent state. The constants of motion, three two-level atoms and field density matrix are obtained. The analytic results are employed to perform some investigations of the temporal evolution of the von Neumann entropy as measure of the degree of entanglement between the three two-level atoms and optical coherent field. The effect of the detuning and the initial atomic states on the evolution of geometric phase and entanglement is analyzed. Also, we demonstrate the link between the geometric phase and non-classical properties during the evolution time. Additionally the effect of detuning and initial conditions on the Mandel parameter is studied. The obtained results are emphasize the impact of the detuning and the initial atomic states of the feature of the entanglement, geometric phase and photon statistics of the optical coherent field.


Sign in / Sign up

Export Citation Format

Share Document