scholarly journals Latent Network Construction for Univariate Time Series Based on Variational Auto-Encode

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 1071
Author(s):  
Jiancheng Sun ◽  
Zhinan Wu ◽  
Si Chen ◽  
Huimin Niu ◽  
Zongqing Tu

Time series analysis has been an important branch of information processing, and the conversion of time series into complex networks provides a new means to understand and analyze time series. In this work, using Variational Auto-Encode (VAE), we explored the construction of latent networks for univariate time series. We first trained the VAE to obtain the space of latent probability distributions of the time series and then decomposed the multivariate Gaussian distribution into multiple univariate Gaussian distributions. By measuring the distance between univariate Gaussian distributions on a statistical manifold, the latent network construction was finally achieved. The experimental results show that the latent network can effectively retain the original information of the time series and provide a new data structure for the downstream tasks.

Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 142
Author(s):  
Jiancheng Sun

The analysis of chaotic time series is usually a challenging task due to its complexity. In this communication, a method of complex network construction is proposed for univariate chaotic time series, which provides a novel way to analyze time series. In the process of complex network construction, how to measure the similarity between the time series is a key problem to be solved. Due to the complexity of chaotic systems, the common metrics is hard to measure the similarity. Consequently, the proposed method first transforms univariate time series into high-dimensional phase space to increase its information, then uses Gaussian mixture model (GMM) to represent time series, and finally introduces maximum mean discrepancy (MMD) to measure the similarity between GMMs. The Lorenz system is used to validate the correctness and effectiveness of the proposed method for measuring the similarity.


2020 ◽  
Vol 5 (1) ◽  
pp. 374
Author(s):  
Pauline Jin Wee Mah ◽  
Nur Nadhirah Nanyan

The main purpose of this study is to compare the performances of univariate and bivariate models on four time series variables of the crude palm oil industry in Peninsular Malaysia. The monthly data for the four variables, which are the crude palm oil production, price, import and export, were obtained from Malaysian Palm Oil Board (MPOB) and Malaysian Palm Oil Council (MPOC). In the first part of this study, univariate time series models, namely, the autoregressive integrated moving average (ARIMA), fractionally integrated autoregressive moving average (ARFIMA) and autoregressive autoregressive (ARAR) algorithm were used for modelling and forecasting purposes. Subsequently, the dependence between any two of the four variables were checked using the residuals’ sample cross correlation functions before modelling the bivariate time series. In order to model the bivariate time series and make prediction, the transfer function models were used. The forecast accuracy criteria used to evaluate the performances of the models were the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results of the univariate time series showed that the best model for predicting the production was ARIMA  while the ARAR algorithm were the best forecast models for predicting both the import and export of crude palm oil. However, ARIMA  appeared to be the best forecast model for price based on the MAE and MAPE values while ARFIMA  emerged the best model based on the RMSE value.  When considering bivariate time series models, the production was dependent on import while the export was dependent on either price or import. The results showed that the bivariate models had better performance compared to the univariate models for production and export of crude palm oil based on the forecast accuracy criteria used.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
Jacob Hale ◽  
Suzanna Long

Energy portfolios are overwhelmingly dependent on fossil fuel resources that perpetuate the consequences associated with climate change. Therefore, it is imperative to transition to more renewable alternatives to limit further harm to the environment. This study presents a univariate time series prediction model that evaluates sustainability outcomes of partial energy transitions. Future electricity generation at the state-level is predicted using exponential smoothing and autoregressive integrated moving average (ARIMA). The best prediction results are then used as an input for a sustainability assessment of a proposed transition by calculating carbon, water, land, and cost footprints. Missouri, USA was selected as a model testbed due to its dependence on coal. Of the time series methods, ARIMA exhibited the best performance and was used to predict annual electricity generation over a 10-year period. The proposed transition consisted of a one-percent annual decrease of coal’s portfolio share to be replaced with an equal share of solar and wind supply. The sustainability outcomes of the transition demonstrate decreases in carbon and water footprints but increases in land and cost footprints. Decision makers can use the results presented here to better inform strategic provisioning of critical resources in the context of proposed energy transitions.


Author(s):  
Nianjun Zhou ◽  
Dhaval Patel ◽  
Arun Iyengar ◽  
Shrey Shrivastava ◽  
Anuradha Bhamidipaty

Sign in / Sign up

Export Citation Format

Share Document