scholarly journals Design and ARM-Based Implementation of Bitstream-Oriented Chaotic Encryption Scheme for H.264/AVC Video

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1431
Author(s):  
Zirui Zhang ◽  
Ping Chen ◽  
Weijun Li ◽  
Xiaoming Xiong ◽  
Qianxue Wang ◽  
...  

In actual application scenarios of the real-time video confidential communication, encrypted videos must meet three performance indicators: security, real-time, and format compatibility. To satisfy these requirements, an improved bitstream-oriented encryption (BOE) method based chaotic encryption for H.264/AVC video is proposed. Meanwhile, an ARM-embedded remote real-time video confidential communication system is built for experimental verification in this paper. Firstly, a 4-D self-synchronous chaotic stream cipher algorithm with cosine anti-controllers (4-D SCSCA-CAC) is designed to enhance the security. The algorithm solves the security loopholes of existing self-synchronous chaotic stream cipher algorithms applied to the actual video confidential communication, which can effectively resist the combinational effect of the chosen-ciphertext attack and the divide-and-conquer attack. Secondly, syntax elements of the H.264 bitstream are analyzed in real-time. Motion vector difference (MVD) coefficients and direct-current (DC) components in Residual syntax element are extracted through the Exponential-Golomb decoding operation and entropy decoding operation based on the context-based adaptive variable length coding (CAVLC) mode, respectively. Thirdly, the DC components and MVD coefficients are encrypted by the 4-D SCSCA-CAC, and the encrypted syntax elements are re-encoded to replace the syntax elements of the original H.264 bitstream, keeping the format compatibility. Besides, hardware codecs and multi-core multi-threading technology are employed to improve the real-time performance of the hardware system. Finally, experimental results show that the proposed scheme, with the advantage of high efficiency and flexibility, can fulfill the requirement of security, real-time, and format compatibility simultaneously.

2014 ◽  
Vol 926-930 ◽  
pp. 2714-2717
Author(s):  
Quan Wei Shi

For the real-time motion capture in the sport training to analysis and study, this paper adopts Kinect technology and the development of sports training combined with. Kinect somatosensory the camera as the system core, the body movements, facial expressions capture system in development costs, operating results and the development efficiency has the optimal balance point. The purpose of this research is based on the OGRE graphics rendering engine, using 3DSMAX and open source code, the design and implementation of Kinect somatosensory camera and 3DSMAX, OGRE combination of game action, motion capture system based on. This system provides an important help for realizing the real-time motion capture in the sports training, can be used in the field of sports training.


2019 ◽  
Vol 892 ◽  
pp. 16-22
Author(s):  
Zahari Awang Ahmad ◽  
Tien Sze Lim ◽  
Voon Chet Koo ◽  
Shuhaizar Daud ◽  
Muhamad Asmi Romli ◽  
...  

A gyro-stabilized antenna platform could implement a real-time motion compensation for a SAR system. Since motion errors reduce during the data acquisition process, post-processing load also reduces. Subsequently, production of well-focused, and high-resolution synthetic aperture radar (SAR) images is conceivable. The research is to design a gyro-stabilized SAR antenna platform that compensates motion in real time during data acquisition. This paper explains the study of undesired motion (error) for typical UAV SAR. The resulting angle ranges of yaw, pitch, and roll describe the magnitude of the motion errors. The design of a gimbal system as a stable antenna platform considers yaw, pitch and roll range parameters. IMU optimization (Complimentary Filter, and Madgwick Filter algorithms are tested and compared in order to decide the optimum optimization scheme for the antenna platform. The data fusion and gradient descent algorithm from Madgwick show significant performance. The implementation of the optimized IMU algorithm and control on a field programmable gate array (FPGA) has resulted in a very effective stable antenna platform.


Author(s):  
Haodong Chen ◽  
Ming C. Leu ◽  
Wenjin Tao ◽  
Zhaozheng Yin

Abstract With the development of industrial automation and artificial intelligence, robotic systems are developing into an essential part of factory production, and the human-robot collaboration (HRC) becomes a new trend in the industrial field. In our previous work, ten dynamic gestures have been designed for communication between a human worker and a robot in manufacturing scenarios, and a dynamic gesture recognition model based on Convolutional Neural Networks (CNN) has been developed. Based on the model, this study aims to design and develop a new real-time HRC system based on multi-threading method and the CNN. This system enables the real-time interaction between a human worker and a robotic arm based on dynamic gestures. Firstly, a multi-threading architecture is constructed for high-speed operation and fast response while schedule more than one task at the same time. Next, A real-time dynamic gesture recognition algorithm is developed, where a human worker’s behavior and motion are continuously monitored and captured, and motion history images (MHIs) are generated in real-time. The generation of the MHIs and their identification using the classification model are synchronously accomplished. If a designated dynamic gesture is detected, it is immediately transmitted to the robotic arm to conduct a real-time response. A Graphic User Interface (GUI) for the integration of the proposed HRC system is developed for the visualization of the real-time motion history and classification results of the gesture identification. A series of actual collaboration experiments are carried out between a human worker and a six-degree-of-freedom (6 DOF) Comau industrial robot, and the experimental results show the feasibility and robustness of the proposed system.


2013 ◽  
Vol 275-277 ◽  
pp. 138-151
Author(s):  
Bing Wang ◽  
Hai Qing Si

An unstructured moving grid scheme is applied to track the real-time motion state of the material interface with large-scale deformation induced by shock in the compressible multi-material flow. The material interface is denoted as a special internal boundary which is made up of unstructured grid edges, and on both sides of that there exist grids used for the two different materials. Riemann problem is solved in order to track the motion of the grid points on the material interface, and the local re-meshing technique is also applied to cope with the large-scale deformation of the moving grids near the interface, especially for the case of strong shocks existing in the multi-material flows. Simultaneously, the material interface is also defined as a kind of grid-deforming boundary in case grid volumes are negative. To obtain the resolution of the whole multi-material flow domain, the arbitrary Lagrangian-Eulerian (ALE) is discretized using Harten-Lax-van Leer-Contact (HLLC) scheme. Several numerical calculations from shock-interface examples demonstrate that this moving grid technique is feasible and effective in tracking the real-time motion state of the material interface.


2018 ◽  
Vol 10 (2) ◽  
pp. 23-39
Author(s):  
Min Long ◽  
Fei Peng ◽  
Xiaoqing Gong

Aiming at secure video sharing in multimedia social network, a format-compliant encryption scheme for high efficiency video coding (HEVC) based on sigh data hiding (SDH) is proposed. The encryption is tightly integrated with the encoding/decoding processes. For each coding unit (CU), the sign of the nonzero coefficient and the first hiding nonzero coefficient are both encrypted with key stream. Meanwhile, one of merging index, motion vector prediction index, sign of motion vector difference and reference frame index is chosen for encryption according to a control factor. As it is explored in this article, experimental results and analysis indicate that it can effectively resist brute-force attack, difference attack and replacement attack. Also, it can keep a good balance in encryption space, computation complexity and security. Based on the encryption scheme, a framework of its implementation in multimedia social network is presented. It has great potential to be implemented for secure video sharing in multimedia social network.


2012 ◽  
Vol 11 (1) ◽  
pp. 59-68
Author(s):  
Tianchen Xu ◽  
Enhua Wu ◽  
Mo Chen ◽  
Ming Xie

In fast figure animation, motion blur is of crucial importance, and this is especially true when an artist wants to generate exaggerating effect through figure motion. For a quite long period of time, animators seek the answer by using certain kind of image blending, no matter by the means of hardware or software. In recent years, methods based on 3D geometry of the motion figure with global illumination become gradually in demand, as they could deliver relatively high quality of motion blur effect. However, the computation cost in those methods is always very high, thus real time rendering become quite difficult to achieve. In this paper, a real-time motion effect based on 3D geometric approach is proposed, in which a special effect along the motion trajectory based on fluid simulation is combined with the volumetric motion blur. Furthermore, the motion trajectory would be decomposed and multi-pass geometry rendering would be employed to achieve geometry instancing for reuse. In this manner, the redundant calculation of each frame could be avoided, and the limitation of trajectory generation would be broken. In the pipeline, we separate motion tracking and fluid solution, to support various fluid effects flexibly. The scheme we present makes use of GPU geometry shading in parallel, aiming at guaranteeing high efficiency of computation while delivering splendid rendering. As a result, real time rendering including the motion blur effect is achieved.


2018 ◽  
Vol 10 (1) ◽  
pp. 67-78
Author(s):  
Juan Chen ◽  
Fei Peng

Aiming to protect the video content and facilitate online video consumption, a perceptual encryption scheme is proposed for high efficiency video coding (HEVC) video. Based on RC4 algorithm, a key stream generation method is constructed, whose proportion of “1” and “0” can be regulated. During HEVC encoding, four kinds of syntax elements including motion vector difference (MVD)' sign, MVD's amplitude, sign of the luma residual coefficient and sign of the chroma residual coefficient, are encrypted by the regulated key stream. Experimental results and analysis show that the proposed scheme has good perceptual protection for the video content, and some advantages such as low computational cost, format-compliance and no bitrate increase can be achieved. It provides an effective resolution for the paid video-on-demand services.


Sign in / Sign up

Export Citation Format

Share Document