scholarly journals High-Efficient Syndrome-Based LDPC Reconciliation for Quantum Key Distribution

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1440
Author(s):  
Hao-Kun Mao ◽  
Yu-Cheng Qiao ◽  
Qiong Li

Quantum key distribution (QKD) is a promising technique to share unconditionally secure keys between remote parties. As an essential part of a practical QKD system, reconciliation is responsible for correcting the errors due to the quantum channel noise by exchanging information through a public classical channel. In the present work, we propose a novel syndrome-based low-density parity-check (LDPC) reconciliation protocol to reduce the information leakage of reconciliation by fully utilizing the syndrome information that was previously wasted. Both theoretical analysis and simulation results show that our protocol can evidently reduce the information leakage as well as the number of communication rounds.

2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Hossein Mani ◽  
Tobias Gehring ◽  
Philipp Grabenweger ◽  
Bernhard Ömer ◽  
Christoph Pacher ◽  
...  

2011 ◽  
Vol 11 (3&4) ◽  
pp. 226-238
Author(s):  
David Elkouss ◽  
Jesus Martinez-Mateo ◽  
Vicente Martin

Quantum key distribution (QKD) relies on quantum and classical procedures in order to achieve the growing of a secret random string ---the key--- known only to the two parties executing the protocol. Limited intrinsic efficiency of the protocol, imperfect devices and eavesdropping produce errors and information leakage from which the set of measured signals ---the raw key--- must be stripped in order to distill a final, information theoretically secure, key. The key distillation process is a classical one in which basis reconciliation, error correction and privacy amplification protocols are applied to the raw key. This cleaning process is known as information reconciliation and must be done in a fast and efficient way to avoid cramping the performance of the QKD system. Brassard and Salvail proposed a very simple and elegant protocol to reconcile keys in the secret-key agreement context, known as \textit{Cascade}, that has become the de-facto standard for all QKD practical implementations. However, it is highly interactive, requiring many communications between the legitimate parties and its efficiency is not optimal, imposing an early limit to the maximum tolerable error rate. In this paper we describe a low-density parity-check reconciliation protocol that improves significantly on these problems. The protocol exhibits better efficiency and limits the number of uses of the communications channel. It is also able to adapt to different error rates while remaining efficient, thus reaching longer distances or higher secure key rate for a given QKD system.


2013 ◽  
Vol 397-400 ◽  
pp. 2024-2027
Author(s):  
Fei Wang ◽  
Peng Zhang ◽  
Chang Yin Liu

A serial-input serial-output encoder based on pipelined type I rotate-left-accumulator (RLA) circuit is presented for multi-rate Quasi-Cyclic Low-Density Parity-Check (QC-LDPC) codes of Digital Terrestrial Multimedia Broadcasting (DTMB) standard. This encoding scheme can reduce the power consumption and save memory resource. FPGA implementation and simulation results show that the design meets the requirement of DTMB standard and simplifies the structure of the memory.


2014 ◽  
Vol 14 (3&4) ◽  
pp. 329-338
Author(s):  
Paul Jouguet ◽  
Sebastien Kunz-Jacques

We study the use of polar codes for both discrete and continuous variables Quantum Key Distribution (QKD). Although very large blocks must be used to obtain the efficiency required by quantum key distribution, and especially continuous variables quantum key distribution, their implementation on generic x86 Central Processing Units (CPUs) is practical. Thanks to recursive decoding, they exhibit excellent decoding speed, much higher than large, irregular Low Density Parity Check (LDPC) codes implemented on similar hardware, and competitive with implementations of the same codes on high-end Graphic Processing Units (GPUs).


2013 ◽  
Vol 340 ◽  
pp. 471-475
Author(s):  
Fei Zhong ◽  
Shu Xu Guo

To improve upon the Low-Density Parity-Check (LDPC) codes , incorporating compressed sensing (CS) and information redundancy, a new joint decoding algorithm frame is presented. The proposed system exploits the information redundancy by CS reconstruction during the iterative decoding process to correct decoding of LDPC codes. The simulation results show that the algorithm presented can improve system decoding performance and obviously make bit error ratio (BER) lower then traditional LDPC codes. In addition, a relatively short argument is given on different CS reconstructed algorithms in proposed system, the new design is shown to benefit from different CS reconstructed algorithms.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
M. Revathy ◽  
R. Saravanan

Low-density parity-check (LDPC) codes have been implemented in latest digital video broadcasting, broadband wireless access (WiMax), and fourth generation of wireless standards. In this paper, we have proposed a high efficient low-density parity-check code (LDPC) decoder architecture for low power applications. This study also considers the design and analysis of check node and variable node units and Euclidean orthogonal generator in LDPC decoder architecture. The Euclidean orthogonal generator is used to reduce the error rate of the proposed LDPC architecture, which can be incorporated between check and variable node architecture. This proposed decoder design is synthesized on Xilinx 9.2i platform and simulated using Modelsim, which is targeted to 45 nm devices. Synthesis report proves that the proposed architecture greatly reduces the power consumption and hardware utilizations on comparing with different conventional architectures.


Sign in / Sign up

Export Citation Format

Share Document