scholarly journals Entropy-Based Shear Stress Distribution in Open Channel for All Types of Flow Using Experimental Data

Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1540
Author(s):  
Yeon-Moon Choo ◽  
Hae-Seong Jeon ◽  
Jong-Cheol Seo

Korean river design standards set general design standards for rivers and river-related projects in Korea, which systematize the technologies and methods involved in river-related projects. This includes measurement methods for parts necessary for river design, but does not include information on shear stress. Shear stress is one of the factors necessary for river design and operation. Shear stress is one of the most important hydraulic factors used in the fields of water, especially for artificial channel design. Shear stress is calculated from the frictional force caused by viscosity and fluctuating fluid velocity. Current methods are based on past calculations, but factors such as boundary shear stress or energy gradient are difficult to actually measure or estimate. The point velocity throughout the entire cross-section is needed to calculate the velocity gradient. In other words, the current Korean river design standards use tractive force and critical tractive force instead of shear stress because it is more difficult to calculate the shear stress in the current method. However, it is difficult to calculate the exact value due to the limitations of the formula to obtain the river factor called the tractive force. In addition, tractive force has limitations that use an empirically identified base value for use in practice. This paper focuses on the modeling of shear-stress distribution in open channel turbulent flow using entropy theory. In addition, this study suggests a shear stress distribution formula, which can easily be used in practice after calculating the river-specific factor T. The tractive force and critical tractive force in the Korean river design standards should be modified by the shear stress obtained by the proposed shear stress distribution method. The present study therefore focuses on the modeling of shear stress distribution in an open channel turbulent flow using entropy theory. The shear stress distribution model is tested using a wide range of forty-two experimental runs collected from the literature. Then, an error analysis is performed to further evaluate the accuracy of the proposed model. The results reveal a correlation coefficient of approximately 0.95–0.99, indicating that the proposed method can estimate shear-stress distribution accurately. Based on this, the results of the distribution of shear stress after calculating the river-specific factors show a correlation coefficient of about 0.86 to 0.98, which suggests that the equation can be applied in practice.

2021 ◽  
Author(s):  
Hae Seong Jeon ◽  
Ji Min Kim ◽  
Yeon Moon Choo

Abstract Korea’s river design standards set general design standards for river and river-related projects in Korea, which systematize the technologies and methods involved in river-related projects. This includes measurement methods for parts necessary for river design, but do not include information on shear stress. Shear Stress is to one of the factors necessary for river design and operation. Shear stress is one of the most important hydraulic factors used in the fields of water especially for artificial channel design. Shear stress is calculated from the frictional force caused by viscosity and fluctuating fluid velocity. Current methods are based on past calculations, but factors such as boundary shear stress or energy gradient are difficult to actually measure or estimate. The point velocity throughout the entire cross section is needed to calculate the velocity gradient. In other words, the current Korea’s river design standards use tractive force, critical tractive force instead of shear stress because it is more difficult to calculate the shear stress in the current method. However, it is difficult to calculate the exact value due to the limitations of the formula to obtain the river factor called the tractive force. In addition, tractive force has limitations that use empirically identified base value for use in practice. This paper focuses on the modeling of shear stress distribution in open channel turbulent flow using entropy theory. In addition, this study suggests shear stress distribution formula, which can be easily used in practice after calculating the river-specific factor T. and that the part of the tractive force and critical tractive force in the Korea’s river design standards should be modified by the shear stress obtained by the proposed shear stress distribution method. The present study therefore focuses on the modeling of shear stress distribution in open channel turbulent flow using entropy theory. The shear stress distribution model is tested using a wide range of forty-two experimental runs collected from the literature. Then, an error analysis is performed to further evaluate the accuracy of the proposed model. The results revealed a correlation coefficient of approximately 0.95–0.99, indicating that the proposed method can estimate shear stress distribution accurately. Based on this, the results of the distribution of shear stress after calculating the river-specific factors show a correlation coefficient of about 0.86 to 0.98, which suggests that the equation can be applied in practice.


Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 87 ◽  
Author(s):  
Domenica Mirauda ◽  
Maria Grazia Russo

The evaluation of bed shear stress distribution is fundamental to predicting the transport of sediments and pollutants in rivers and to designing successful stable open channels. Such distribution cannot be determined easily as it depends on the velocity field, the shape of the cross section, and the bed roughness conditions. In recent years, information theory has been proven to be reliable for estimating shear stress along the wetted perimeter of open channels. The entropy models require the knowledge of the shear stress maximum and mean values to calculate the Lagrange multipliers, which are necessary to the resolution of the shear stress probability distribution function. This paper proposes a new formulation which stems from the maximization of the Tsallis entropy and simplifies the calculation of the Lagrange coefficients in order to estimate the bed shear stress distribution in open-channel flows. This formulation introduces a relationship between the dimensionless mean shear stress and the entropic parameter which is based on the ratio between the observed mean and maximum velocity of an open-channel cross section. The validity of the derived expression was tested on a large set of literature laboratory measurements in rectangular cross sections having different bed and sidewall roughness conditions as well as various water discharges and flow depths. A detailed error analysis showed good agreement with the experimental data, which allowed linking the small-scale dynamic processes to the large-scale kinematic ones.


1973 ◽  
Vol 57 (3) ◽  
pp. 583-602 ◽  
Author(s):  
S. C. Kacker

An experimental study of fully developed uniform-density turbulent flow in a circular pipe containing one or two rods located off-centre is described. The friction factor in both cases was found to be approximately 5 % higher than the simple pipe friction factor. The shear stress distribution on the rod surface was determined using calibrated boundary-layer fences. The normalized shear stress distributions were independent of Reynolds number in the range 3·7 × 104to 2·15 × 105. Mean-velocity measurements were obtained to check the validity of the universal law of the wall near the rod surface. Secondary-flow velocities were measured by a hot-wire anemometer and integrated to yield the secondary-flow stream function. Secondary-flow velocities of the order of 1 % of the mean velocity were observed. In the gap between the two pins, however, the secondary-flow velocities were only ½% of the mean velocity. It is demonstrated that the secondary flow cannot be neglected if a force balance is used to determine the shear stress distribution on the rod surface.


Mathematics ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 596
Author(s):  
Babak Lashkar-Ara ◽  
Niloofar Kalantari ◽  
Zohreh Sheikh Khozani ◽  
Amir Mosavi

One of the most important subjects of hydraulic engineering is the reliable estimation of the transverse distribution in the rectangular channel of bed and wall shear stresses. This study makes use of the Tsallis entropy, genetic programming (GP) and adaptive neuro-fuzzy inference system (ANFIS) methods to assess the shear stress distribution (SSD) in the rectangular channel. To evaluate the results of the Tsallis entropy, GP and ANFIS models, laboratory observations were used in which shear stress was measured using an optimized Preston tube. This is then used to measure the SSD in various aspect ratios in the rectangular channel. To investigate the shear stress percentage, 10 data series with a total of 112 different data for were used. The results of the sensitivity analysis show that the most influential parameter for the SSD in smooth rectangular channel is the dimensionless parameter B/H, Where the transverse coordinate is B, and the flow depth is H. With the parameters (b/B), (B/H) for the bed and (z/H), (B/H) for the wall as inputs, the modeling of the GP was better than the other one. Based on the analysis, it can be concluded that the use of GP and ANFIS algorithms is more effective in estimating shear stress in smooth rectangular channels than the Tsallis entropy-based equations.


Sign in / Sign up

Export Citation Format

Share Document