scholarly journals Thermodynamic Definitions of Temperature and Kappa and Introduction of the Entropy Defect

Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1683
Author(s):  
George Livadiotis ◽  
David J. McComas

This paper develops explicit and consistent definitions of the independent thermodynamic properties of temperature and the kappa index within the framework of nonextensive statistical mechanics and shows their connection with the formalism of kappa distributions. By defining the “entropy defect” in the composition of a system, we show how the nonextensive entropy of systems with correlations differs from the sum of the entropies of their constituents of these systems. A system is composed extensively when its elementary subsystems are independent, interacting with no correlations; this leads to an extensive system entropy, which is simply the sum of the subsystem entropies. In contrast, a system is composed nonextensively when its elementary subsystems are connected through long-range interactions that produce correlations. This leads to an entropy defect that quantifies the missing entropy, analogous to the mass defect that quantifies the mass (energy) associated with assembling subatomic particles. We develop thermodynamic definitions of kappa and temperature that connect with the corresponding kinetic definitions originated from kappa distributions. Finally, we show that the entropy of a system, composed by a number of subsystems with correlations, is determined using both discrete and continuous descriptions, and find: (i) the resulted entropic form expressed in terms of thermodynamic parameters; (ii) an optimal relationship between kappa and temperature; and (iii) the correlation coefficient to be inversely proportional to the temperature logarithm.

2017 ◽  
Vol 95 (3) ◽  
pp. 211-219 ◽  
Author(s):  
Mustafa M. Hawamdeh ◽  
Mohamed K. Al-Sugheir ◽  
Ayman S. Sandouqa ◽  
Humam B. Ghassib

The thermodynamic properties of two-dimensional graphene nanosystems are investigated using the static fluctuation approximation (SFA). These properties are analyzed using both extensive and nonextensive statistical mechanics. It is found that these properties are less sensitive to temperature when using nonextensive — in contrast to extensive — statistical mechanics. It is also noted that the mean internal energy and the specific heat behave as a power law, Tα, at T < 8 eV; whereas they go to the classical limit for the two-dimensional ideal gas at T > 8 eV. The results are presented in a set of figures and one table. The roles played by the number of particles and the entropy parameter q are underlined. Whenever possible, comparisons are made to previous studies. It is concluded that Boltzmann–Gibbs statistics are not valid for some cases, and that SFA results are in good agreement with those obtained within other formalisms.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
A. Chmel ◽  
V. Smirnov

The ice floe speed variations were monitored at the research camp North Pole 35 established on the Arctic ice pack in 2008. A three-month time series of measured speed values was used for determining changes in the kinetic energy of the drifting ice floe. The constructed energy distributions were analyzed by methods of nonextensive statistical mechanics based on the Tsallis statistics for open nonequilibrium systems, such as tectonic formations and drifting sea ice. The nonextensivity means the nonadditivity of externally induced energy changes in multicomponent systems due to dynamic interrelation of components having no structural links. The Tsallis formalism gives one an opportunity to assess the correlation between ice floe motions through a specific parameter, the so-called parameter of nonextensivity. This formalistic assessment of the actual state of drifting pack allows one to forecast some important trends in sea ice behavior, because the level of correlated dynamics determines conditions for extended mechanical perturbations in ice pack. In this work, we revealed temporal fluctuations of the parameter of nonextensivity and observed its maximum value before a large-scale sea ice fragmentation (faulting) of consolidated sea ice. The correlation was not detected in fragmented sea ice where long-range interactions are weakened.


1979 ◽  
Vol 44 ◽  
pp. 349-355
Author(s):  
R.W. Milkey

The focus of discussion in Working Group 3 was on the Thermodynamic Properties as determined spectroscopically, including the observational techniques and the theoretical modeling of physical processes responsible for the emission spectrum. Recent advances in observational techniques and theoretical concepts make this discussion particularly timely. It is wise to remember that the determination of thermodynamic parameters is not an end in itself and that these are interesting chiefly for what they can tell us about the energetics and mass transport in prominences.


Sign in / Sign up

Export Citation Format

Share Document