scholarly journals Mapping K-12 Computer Science Teacher’s Interest, Self-Confidence, and Knowledge about the Use of Educational Robotics to Teach

2021 ◽  
Vol 11 (8) ◽  
pp. 443
Author(s):  
Nuno Dorotea ◽  
João Piedade ◽  
Ana Pedro

This paper reports a case study, developed in K-12 Portuguese Education, that aimed to analyze the computer science teachers’ knowledge, interest, and self-confidence to use educational robotics and other programable objects in classroom activities to teach computer science concepts and to promote students’ computational thinking skills. The research design was organized into a descriptive and exploratory quantitative approach. The participants were 174 in-service computer science teachers of Portuguese public education. The data was gathered from the participants, through the online application of the Robotics Interest Questionnaire scale (RIQ). Very positive levels of teacher’s knowledge, interest, and self-efficacy to use educational robotics for teaching purposes were reported in the study outcomes. These constructs were underlined in several studies as relevant factors to promote the use of educational robotics and other similar technologies by the teachers. Despite the study limitations and the small context, a set of relevant results was highlighted on computer science in-service teachers’ interest and preparation to use robotics and to support their students in learning activities with these artifacts.

Author(s):  
Amy Eguchi

President Obama's initiative, “computer science for all,” has been a rallying slogan for promoting computer science in K-12 education. Although the participation of people of color in computer science (CS) has increased in the past several years, it is still drastically low and does not reflect the real picture of our society. This chapter explores how educational robotics as a learning tool can inspire underrepresented minorities including females and students of color to become interested in CS. Supported by Papert's constructionism theory, educational robotics effectively facilitates students' learning of various concepts in CS and STEM. Educational robotics is a learning tool which inspires students' interest in learning. It provides a learning environment that promotes students' learning of various CS concepts and computational thinking skills. Although robots naturally spark students' interests, to make it most effective, teachers are required effortfully to create learning opportunities that are authentic and meaningful for individual students.


2022 ◽  
pp. 756-781
Author(s):  
Amy Eguchi

President Obama's initiative, “computer science for all,” has been a rallying slogan for promoting computer science in K-12 education. Although the participation of people of color in computer science (CS) has increased in the past several years, it is still drastically low and does not reflect the real picture of our society. This chapter explores how educational robotics as a learning tool can inspire underrepresented minorities including females and students of color to become interested in CS. Supported by Papert's constructionism theory, educational robotics effectively facilitates students' learning of various concepts in CS and STEM. Educational robotics is a learning tool which inspires students' interest in learning. It provides a learning environment that promotes students' learning of various CS concepts and computational thinking skills. Although robots naturally spark students' interests, to make it most effective, teachers are required effortfully to create learning opportunities that are authentic and meaningful for individual students.


2019 ◽  
Vol 8 (1) ◽  
pp. 117-126
Author(s):  
Titik Rahayu ◽  
Kamisah Osman

The trending topic in today's education is computational thinking skills which are used to help to solve complicated problems easier. This study aims to identify the level of knowledge and self-confidence of science teacher candidates (physics and biology) on computational thinking skills. The survey research design was used through a mixed-method approach by combining quantitative and qualitative approaches. The quantitative study involved 1016 randomly selected groups of science teachers whilein the qualitative study, eight science teachers were chosen based on the scores obtained from the quantitative study. The questionnaire was used as a quantitative data collecting technique to analyze descriptive statistics. Then, an interview was used as the qualitative data collecting technique and was analyzed through theme creation. The findings show that science teacher candidates have a high level of knowledge and self-confidence. The implication of this study is very important for teacher candidates because computational thinking can help to facilitate problems solving in everyday life. Teacher candidates need to be given knowledge and understanding of computational thinking skills, to have readiness and self-confidence in facing the challenges of the learning in the 21st-century


Author(s):  
Betul C. Czerkawski

It has been more than a decade since Jeanette Wing's (2006) influential article about computational thinking (CT) proposed CT to be a “fundamental skill for everyone” (p. 33) and that needs to be added to every child's knowledge and skill set like reading, writing and arithmetic. Wing suggested that CT is a universal skill, and not only for computer scientists. This call resonated with many educators leading to various initiatives by the International Society for Teacher in Education (ISTE) and Computer Science Teachers Association (CSTA) provided the groundwork to integrate CT into the K-12 curriculum. While CT is not a new concept and has been taught in computer science departments for decades, Wing's call created a shift towards educational computing and the need for integrating it into curriculum for all. Since 2006, many scholars have conducted empirical or qualitative research to study the what, how and why of CT. This chapter reviews the most current literature and identifies general research patterns, themes and directions for the future. The purpose of the chapter is to emphasize future research needs by cumulatively looking at what has been done to date in computational thinking research. Consequently, the conclusion and discussion section of the paper presents a research agenda for future.


2018 ◽  
Vol 3 (3) ◽  
pp. 51 ◽  
Author(s):  
Lauren Birney ◽  
Denise McNamara

This article provides an overview of the work pioneered by the consortium of collaborators in the Billion Oyster Curriculum and Community Enterprise for Restoration Science Project (BOP-CCERS). The BOP-CCERS are working to support computational thinking in the New York City public school classrooms by creating curriculum which combines:1. The Field Station Research (Oyster Restoration Stations) and data collection2. The Billion Oyster Project Digital Platform and data input and storage 3. The New York State Science Intermediate Level Learning Standards. 4. The Computer Science Teachers Association K-12 Computer Science StandardsThe integration of computational thinking in the STEM middle school classroom is showcased through the intertwining of these dimensions into a trans-disciplinary learning experience that is rich in both content and practice. Students will be able to explain real-world phenomena found in their own community and design possible solutions through the key components of computational thinking.The Curriculum and Community Enterprise for Restoration Science Project digital platform and curriculum will be the resources that provide the underpinnings of the integration of computational thinking in the STEM middle school classroom. The primary functions of the platform include the collection and housing of the data pertaining to the harbor and its component parts, both abiotic and biotic and the storage of the curriculum for both the classroom and the field stations.


Informatics ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 43 ◽  
Author(s):  
Chiazzese ◽  
Arrigo ◽  
Chifari ◽  
Lonati ◽  
Tosto

Research has shown that educational robotics can be an effective tool to increase students’ acquisition of knowledge in the subjects of science, technology, engineering, and mathematics and promote, at the same time, a progression in the development of computational thinking (CT) skills in K–12 (kindergarten to 12th grade) education. Within this research field, the present study first sought to assess the effect of a robotics laboratory on the acquisition of CT-related skills in primary school children. The study also aimed to compare the magnitude of the effect of the laboratory across third- and fourth-grade students. For the purpose of the study, a quasi-experimental post-test-only design was adopted, and a group of 51 students, from third- and fourth-grade classrooms, participating in the robotics laboratories, were compared to a control group of 32 students from classrooms of the same grades. A set of Bebras tasks was selected as an overall measure of CT skills and was administered to children in both the intervention and control groups. Overall, the results showed that programming robotics artefacts may exert a positive impact on students’ learning of computational thinking skills. Moreover, the effect of the intervention was found to be greater among third-grade children.


Author(s):  
Laura L. Fuhrmann ◽  
Andrea M. Wallace

Recognizing the persistent problem of the underrepresentation of women in computer science, this chapter examines the barriers existing in the kindergarten through Grade 12 educational environment. It explores the vicious cycle that exists in the education field, as the change agents are predominantly women. Much of the research from the past decade reiterates the issue but substantive changes to reduce the gender gap have not occurred at rates that keep pace with the evolving digital society. This chapter offers practical solutions to (1) distinguish between computer science, instructional technology, and digital literacy in the K-12 educational setting; (2) propose ways to promote opportunities in these environments, for all students, with a focus on the underrepresented female population; (3) formulate strategies for educational leaders to incorporate computer science knowledge including computational thinking skills into teacher preparation programs and professional development to support those never exposed.


Author(s):  
Sharin Rawhiya Jacob ◽  
Mark Warschauer ◽  
◽  

Today’s students will enter a workforce that is powerfully shaped by computing. To be successful in a changing economy, students must learn to think algorithmically and computationally, to solve problems with varying levels of abstraction. These computational thinking skills have become so integrated into social function as to represent fundamental literacies. However, computer science has not been widely taught in K-12 schools. Efforts to create computer science standards and frameworks have yet to make their way into mandated course requirements. Despite a plethora of research on digital literacies, research on the role of computational thinking in the literature is sparse. This conceptual paper proposes a three dimensional framework for exploring the relationship between computational thinking and literacy through: 1) situating computational thinking in the literature as a literacy; 2) outlining mechanisms by which students’ existing literacy skills can be leveraged to foster computational thinking; and 3) elaborating ways in which computational thinking skills facilitate literacy development.


Sign in / Sign up

Export Citation Format

Share Document