scholarly journals Electrolyte Additives in Lithium Ion EV Batteries and the Relationship of the SEI Composition to Cell Resistance and Lifetime

Electrochem ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 200-216
Author(s):  
Micheal J. Lain ◽  
Irene Rubio Lopez ◽  
Emma Kendrick

Sulphur, boron and phosphorous containing electrolyte additives were evaluated in cells containing pristine electrodes from a commercial EV lithium ion cell against a standard baseline electrolyte. Following formation and a full cell ageing step, cycling performance and impedance spectroscopy were used to elucidate the most effective additives. The additive tris trimethyl silyl phosphite (TTSPi) showed the most promise; with improved cell capacities and reduced impedances observed after formation. X-ray photoelectron spectroscopy (XPS) measurements on anode elemental surface profiles were correlated with the electrochemical performance. It was observed that increased lithium fluoride content on the surface of the anodes typically produced cells with lower impedance. Sulphur containing additives also showed improved cell behaviours; and the decomposition and chemical reactions of these compounds at the anode surface is discussed in detail. The main influence of TTSPi was to reduce the amount of oxygen (C=O) and sulphur in the electrolyte interphase (SEI) layer; to be replaced with hydrocarbons.

2006 ◽  
Vol 18 (6) ◽  
pp. 698-704 ◽  
Author(s):  
Shujie Liu ◽  
◽  
Shuichi Nagasawa ◽  
Satoru Takahashi ◽  
Kiyoshi Takamasu

Semiconductor processing must be fast and highly accurate when measuring the surface profile of soft thin films such as photoresists. We propose doing so using a multi-ball-cantilever AFM, which covers a wide area at high speed. Each cantilever has a ball stylus with a diameter that does not plastically deform measured surfaces. We studied resist profiles and the influence of the AFM stylus on the resist surface. To verify our proposal’s feasibility, we simulated the relationship of the indenter shape, size, and load and resist surface deformation using the finite element method (FEM). We discuss the influence of the AFM stylus based on the force-displacement curve. Experiments using the multi-ball-cantilever AFM confirmed its feasibility for measuring surface profiles highly accurately.


RSC Advances ◽  
2020 ◽  
Vol 10 (28) ◽  
pp. 16302-16312
Author(s):  
Xiao Liu ◽  
Jianhua Zhou ◽  
Zhen Xu ◽  
Yixuan Wang

The formation of a solid electrolyte interphase (SEI) between the anode surface and the electrolyte of lithium-ion batteries (LIBs) has been considered to be the most important yet the least understood issue of LIBs.


2019 ◽  
Vol 33 (29) ◽  
pp. 91-100
Author(s):  
Honghe Zheng ◽  
Paul Ridgway ◽  
Xiangyun Song ◽  
Shidi Xun ◽  
Jin Chong ◽  
...  

1997 ◽  
Vol 477 ◽  
Author(s):  
Katsuyuki Sekine ◽  
Geun-Min Choi ◽  
Yuji Saito ◽  
Tadahiro Ohmi

ABSTRACTWe have studied native oxide growth behavior on silicon surface with various resistivity in ultra pure water (UPW), SPM (sulfuric acid-hydrogen peroxide mixture, H2SO4:H2O2 = 4:1) cleaning and UPW contaminated with CuF2 by X-Ray photoelectron spectroscopy (XPS). The results show that the native oxide growth behavior in UPW is different from that in UPW contaminated with CuF2 and that grown by SPM cleaning. Native oxide thickness grown in UPW depends on resistivity. Native oxide thickness grown during SPM cleaning has the relationship of steric hinderance effect. However, in CuF2 solution, native oxide thickness is more influenced by the redox reaction between Cu ions and silicon atoms.


2020 ◽  
Vol 24 (11-12) ◽  
pp. 3145-3156
Author(s):  
Natascha von Aspern ◽  
Christian Wölke ◽  
Markus Börner ◽  
Martin Winter ◽  
Isidora Cekic-Laskovic

Abstract Two functional high-voltage additives, namely 2-(2,2,3,3,3-pentafluoropropoxy)-1,3,2-dioxaphospholane (PFPOEPi) and 1-methyl-3,5-bis(trifluoromethyl)-1H-pyrazole (MBTFMP) were combined as functional additive mixture in organic carbonate–based electrolyte formulation for high-voltage lithium battery application. Their impact on the overall performance in NMC111 cathode-based cells was compared with the single-additive–containing electrolyte counterpart. The obtained results point to similar cycling performance of the additive mixture containing electrolyte formulation compared with the MBTFMP-containing cells, whereas the single PFPOEPi-containing cells displayed the best cycling performance in NMC111||graphite cells. With regard to the cathode electrolyte interphase (CEI), characterized and analyzed by means of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), both the MBTFMP and the PFPOEPi functional additives decompose on the NMC111 surface in single-additive–containing electrolyte formulations. However, the thickness of the CEI formed in the additive mixture–containing electrolyte formulation is determined by the MBTFMP additive, whereas the PFPOEPi additive impacts a change in the composition of the CEI. Furthermore, the MBTFMP additive decomposes prior to the PFPOEPi and, therefore, dominates the cycling performance of NMC111||graphite cells containing functional additive mixture–based electrolyte. This systematic approach allows us to understand the synergistic impact of each functional additive in an electrolyte formulation containing an additive mixture and helps to identify the right additive combination for advanced electrolyte formulation as well as to elucidate whether the single-additive or the additive mixture approach is more effective for the development of advanced functional electrolytes for lithium-based cell chemistries. Graphical abstract


Sign in / Sign up

Export Citation Format

Share Document