scholarly journals A Cartesian Genetic Programming Based Parallel Neuroevolutionary Model for Cloud Server’s CPU Usage Prediction

Electronics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 67
Author(s):  
Qazi Zia Ullah ◽  
Gul Muhammad Khan ◽  
Shahzad Hassan ◽  
Asif Iqbal ◽  
Farman Ullah ◽  
...  

Cloud computing use is exponentially increasing with the advent of industrial revolution 4.0 technologies such as the Internet of Things, artificial intelligence, and digital transformations. These technologies require cloud data centers to process massive volumes of workloads. As a result, the data centers consume gigantic amounts of electrical energy, and a large portion of data center electrical energy comes from fossil fuels. It causes greenhouse gas emissions and thus ensuing in global warming. An adaptive resource utilization mechanism of cloud data center resources is vital to get by with this huge problem. The adaptive system will estimate the resource utilization and then adjust the resources accordingly. Cloud resource utilization estimation is a two-fold challenging task. First, the cloud workloads are sundry, and second, clients’ requests are uneven. In the literature, several machine learning models have estimated cloud resources, of which artificial neural networks (ANNs) have shown better performance. Conventional ANNs have a fixed topology and allow only to train their weights either by back-propagation or neuroevolution such as a genetic algorithm. In this paper, we propose Cartesian genetic programming (CGP) neural network (CGPNN). The CGPNN enhances the performance of conventional ANN by allowing training of both its parameters and topology, and it uses a built-in sliding window. We have trained CGPNN with parallel neuroevolution that searches for global optimum through numerous directions. The resource utilization traces of the Bitbrains data center is used for validation of the proposed CGPNN and compared results with machine learning models from the literature on the same data set. The proposed method has outstripped the machine learning models from the literature and resulted in 97% prediction accuracy.

Author(s):  
Deepika T. ◽  
Prakash P.

The flourishing development of the cloud computing paradigm provides several services in the industrial business world. Power consumption by cloud data centers is one of the crucial issues for service providers in the domain of cloud computing. Pursuant to the rapid technology enhancements in cloud environments and data centers augmentations, power utilization in data centers is expected to grow unabated. A diverse set of numerous connected devices, engaged with the ubiquitous cloud, results in unprecedented power utilization by the data centers, accompanied by increased carbon footprints. Nearly a million physical machines (PM) are running all over the data centers, along with (5 – 6) million virtual machines (VM). In the next five years, the power needs of this domain are expected to spiral up to 5% of global power production. The virtual machine power consumption reduction impacts the diminishing of the PM’s power, however further changing in power consumption of data center year by year, to aid the cloud vendors using prediction methods. The sudden fluctuation in power utilization will cause power outage in the cloud data centers. This paper aims to forecast the VM power consumption with the help of regressive predictive analysis, one of the Machine Learning (ML) techniques. The potency of this approach to make better predictions of future value, using Multi-layer Perceptron (MLP) regressor which provides 91% of accuracy during the prediction process.


Author(s):  
Manzano S. Ricardo ◽  
Nishith Goel ◽  
Marzia Zaman ◽  
Rohit Joshi ◽  
Mustafa Daraghmeh ◽  
...  

2021 ◽  
Vol 18 (4) ◽  
pp. 1-26
Author(s):  
Wonik Seo ◽  
Sanghoon Cha ◽  
Yeonjae Kim ◽  
Jaehyuk Huh ◽  
Jongse Park

With the proliferation of applications with machine learning (ML), the importance of edge platforms has been growing to process streaming sensor, data locally without resorting to remote servers. Such edge platforms are commonly equipped with heterogeneous computing processors such as GPU, DSP, and other accelerators, but their computational and energy budget are severely constrained compared to the data center servers. However, as an edge platform must perform the processing of multiple machine learning models concurrently for multimodal sensor data, its scheduling problem poses a new challenge to map heterogeneous machine learning computation to heterogeneous computing processors. Furthermore, processing of each input must provide a certain level of bounded response latency, making the scheduling decision critical for the edge platform. This article proposes a set of new heterogeneity-aware ML inference scheduling policies for edge platforms. Based on the regularity of computation in common ML tasks, the scheduler uses the pre-profiled behavior of each ML model and routes requests to the most appropriate processors. It also aims to satisfy the service-level objective (SLO) requirement while reducing the energy consumption for each request. For such SLO supports, the challenge of ML computation on GPUs and DSP is its inflexible preemption capability. To avoid the delay caused by a long task, the proposed scheduler decomposes a large ML task to sub-tasks by its layer in the DNN model.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


Sign in / Sign up

Export Citation Format

Share Document