scholarly journals Improving the Prediction Quality in Memory-Based Collaborative Filtering Using Categorical Features

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 214
Author(s):  
Lei Chen ◽  
Yuyu Yuan ◽  
Jincui Yang ◽  
Ahmed Zahir

Despite years of evolution of recommender systems, improving prediction accuracy remains one of the core problems among researchers and industry. It is common to use side information to bolster the accuracy of recommender systems. In this work, we focus on using item categories, specifically movie genres, to improve the prediction accuracy as well as coverage, precision, and recall. We derive the user’s taste for an item using the ratings expressed. Similarly, using the collective ratings given to an item, we identify how much each item belongs to a certain genre. These two vectors are then combined to get a user-item-weight matrix. In contrast to the similarity-based weight matrix in memory-based collaborative filtering, we use user-item-weight to make predictions. The user-item-weights can be used to explain to users why certain items have been recommended. We evaluate our proposed method using three real-world datasets. The proposed model performs significantly better than the baseline methods. In addition, we use the user-item-weight matrix to alleviate the sparsity problem associated with correlation-based similarity. In addition to that, the proposed model has a better computational complexity for making predictions than the k-nearest neighbor (kNN) method.

Author(s):  
Guibing Guo ◽  
Enneng Yang ◽  
Li Shen ◽  
Xiaochun Yang ◽  
Xiaodong He

Trust-aware recommender systems have received much attention recently for their abilities to capture the influence among connected users. However, they suffer from the efficiency issue due to large amount of data and time-consuming real-valued operations. Although existing discrete collaborative filtering may alleviate this issue to some extent, it is unable to accommodate social influence. In this paper we propose a discrete trust-aware matrix factorization (DTMF) model to take dual advantages of both social relations and discrete technique for fast recommendation. Specifically, we map the latent representation of users and items into a joint hamming space by recovering the rating and trust interactions between users and items. We adopt a sophisticated discrete coordinate descent (DCD) approach to optimize our proposed model. In addition, experiments on two real-world datasets demonstrate the superiority of our approach against other state-of-the-art approaches in terms of ranking accuracy and efficiency.


2019 ◽  
Vol 9 (20) ◽  
pp. 4378 ◽  
Author(s):  
Yuan ◽  
Zahir ◽  
Yang

Recommendation systems often use side information to both alleviate problems, such as the cold start problem and data sparsity, and increase prediction accuracy. One such piece of side information, which has been widely investigated in addressing such challenges, is trust. However, the difficulty in obtaining explicit relationship data has led researchers to infer trust values from other means such as the user-to-item relationship. This paper proposes a model to improve prediction accuracy by applying the trust relationship between the user and item ratings. Two approaches to implement trust into prediction are proposed: one involves the use of estimated trust, and the other involves the initial trust. The efficiency of the proposed method is verified by comparing the obtained results with four well-known methods, including the state-of-the-art deep learning-based method of neural graph collaborative filtering (NGCF). The experimental results demonstrate that the proposed method performs significantly better than the NGCF, and the three other matrix factorization methods, namely, the singular value decomposition (SVD), SVD++, and the social matrix factorization (SocialMF).


Author(s):  
Hanfei Zhang ◽  
Yumei Jian ◽  
Ping Zhou

: A class correlation distance collaborative filtering recommendation algorithm is proposed to solve the problems of category judgment and distance metric in the traditional collaborative filtering recommendation algorithm, which is using the advantage of the distance between the same samples and the class related distance. First, the class correlation distance between the training samples is calculated and stored. Second, the K nearest neighbor samples are selected, the class correlation distance of training samples and the difference ratio between the test samples and training samples are calculated respectively. Finally, according to the difference ratio, we classify the different types of samples. The experimental result shows that the algorithm combined with user rating preference can get lower MAE value, and the recommendation effect is better. With the change of K value, CCDKNN algorithm is obviously better than KNN algorithm and DWKNN algorithm, and the accuracy performance is more stable. The algorithm improves the accuracy of similarity and predictability, which has better performance than the traditional algorithm.


Author(s):  
Irfan Ullah Khan ◽  
Nida Aslam ◽  
Malak Aljabri ◽  
Sumayh S. Aljameel ◽  
Mariam Moataz Aly Kamaleldin ◽  
...  

The COVID-19 outbreak is currently one of the biggest challenges facing countries around the world. Millions of people have lost their lives due to COVID-19. Therefore, the accurate early detection and identification of severe COVID-19 cases can reduce the mortality rate and the likelihood of further complications. Machine Learning (ML) and Deep Learning (DL) models have been shown to be effective in the detection and diagnosis of several diseases, including COVID-19. This study used ML algorithms, such as Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and K-Nearest Neighbor (KNN) and DL model (containing six layers with ReLU and output layer with sigmoid activation), to predict the mortality rate in COVID-19 cases. Models were trained using confirmed COVID-19 patients from 146 countries. Comparative analysis was performed among ML and DL models using a reduced feature set. The best results were achieved using the proposed DL model, with an accuracy of 0.97. Experimental results reveal the significance of the proposed model over the baseline study in the literature with the reduced feature set.


2020 ◽  
Vol 10 (4) ◽  
pp. 1257 ◽  
Author(s):  
Liang Zhang ◽  
Quanshen Wei ◽  
Lei Zhang ◽  
Baojiao Wang ◽  
Wen-Hsien Ho

Conventional recommender systems are designed to achieve high prediction accuracy by recommending items expected to be the most relevant and interesting to users. Therefore, they tend to recommend only the most popular items. Studies agree that diversity of recommendations is as important as accuracy because it improves the customer experience by reducing monotony. However, increasing diversity reduces accuracy. Thus, a recommendation algorithm is needed to recommend less popular items while maintaining acceptable accuracy. This work proposes a two-stage collaborative filtering optimization mechanism that obtains a complete and diversified item list. The first stage of the model incorporates multiple interests to optimize neighbor selection. In addition to using conventional collaborative filtering to predict ratings by exploiting available ratings, the proposed model further considers the social relationships of the user. A novel ranking strategy is then used to rearrange the list of top-N items while maintaining accuracy by (1) rearranging the area controlled by the threshold and by (2) maximizing popularity while maintaining an acceptable reduction in accuracy. An extensive experimental evaluation performed in a real-world dataset confirmed that, for a given loss of accuracy, the proposed model achieves higher diversity compared to conventional approaches.


2020 ◽  
Vol 8 (4) ◽  
pp. 367
Author(s):  
Muhammad Arief Budiman ◽  
Gst. Ayu Vida Mastrika Giri

The development of the music industry is currently growing rapidly, millions of music works continue to be issued by various music artists. As for the technologies also follows these developments, examples are mobile phones applications that have music subscription services, namely Spotify, Joox, GrooveShark, and others. Application-based services are increasingly in demand by users for streaming music, free or paid. In this paper, a music recommendation system is proposed, which the system itself can recommend songs based on the similarity of the artist that the user likes or has heard. This research uses Collaborative Filtering method with Cosine Similarity and K-Nearest Neighbor algorithm. From this research, a system that can recommend songs based on artists who are related to one another is generated.


Author(s):  
Jenicka S.

Texture feature is a decisive factor in pattern classification problems because texture features are not deduced from the intensity of current pixel but from the grey level intensity variations of current pixel with its neighbors. In this chapter, a new texture model called multivariate binary threshold pattern (MBTP) has been proposed with five discrete levels such as -9, -1, 0, 1, and 9 characterizing the grey level intensity variations of the center pixel with its neighbors in the local neighborhood of each band in a multispectral image. Texture-based classification has been performed with the proposed model using fuzzy k-nearest neighbor (fuzzy k-NN) algorithm on IRS-P6, LISS-IV data, and the results have been evaluated based on confusion matrix, classification accuracy, and Kappa statistics. From the experiments, it is found that the proposed model outperforms other chosen existing texture models.


2020 ◽  
Vol 31 (4) ◽  
pp. 24-45
Author(s):  
Mengmeng Shen ◽  
Jun Wang ◽  
Ou Liu ◽  
Haiying Wang

Tags generated in collaborative tagging systems (CTSs) may help users describe, categorize, search, discover, and navigate content, whereas the difficulty is how to go beyond the information explosion and obtain experts and the required information quickly and accurately. This paper proposes an expert detection and recommendation (EDAR) model based on semantics of tags; the framework consists of community detection and EDAR. Specifically, this paper firstly mines communities based on an improved agglomerative hierarchical clustering (I-AHC) to cluster tags and then presents a community expert detection (CED) algorithm for identifying community experts, and finally, an expert recommendation algorithm is proposed based the improved collaborative filtering (CF) algorithm to recommend relevant experts for the target user. Experiments are carried out on real world datasets, and the results from data experiments and user evaluations have shown that the proposed model can provide excellent performance compared to the benchmark method.


2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Ming Zhang ◽  
Hanlin Wu ◽  
Zhifeng Qiu ◽  
Yifan Zhang ◽  
Boquan Li

An accurate demand prediction of emergency supplies according to disaster information and historical data is an important research subject in emergency rescue. This study aims at improving supplies demand prediction accuracy under partial data fuzziness and missing. The main contributions of this study are summarized as follows. (1) In view that it is difficult for the turning point of the whitenization weight function to determine fuzzy data, two computational formulas solving “core” of fuzzy interval grey numbers were proposed, and the obtained “core” replaced primary fuzzy information so as to reach the goal of transforming uncertain information into certain information. (2) For partial data missing, the improved grey k-nearest neighbor (GKNN) algorithm was put forward based on grey relation degree and K-nearest neighbor (KNN) algorithm. Weights were introduced in the filling and logic test conditions were added after filling so that filling results were of higher truthfulness and accuracy. (3) The preprocessed data are input into the improved algorithm based on the genetic algorithm and BP neural networks (GABP) to obtain the demand prediction model. Finally the calculation presents that the prediction accuracy and its stability are improved at the five-group comparative tests of calculated examples of actual disasters. The experiments indicated that the supplies demand prediction model under data fuzziness and missing proposed in this study was of higher prediction accuracy.


Sign in / Sign up

Export Citation Format

Share Document