scholarly journals Deadlock-Free Planner for Occluded Intersections Using Estimated Visibility of Hidden Vehicles

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 411
Author(s):  
Patiphon Narksri ◽  
Eijiro Takeuchi ◽  
Yoshiki Ninomiya ◽  
Kazuya Takeda

A common approach used for planning blind intersection crossings is to assume that hypothetical vehicles are approaching the intersection at a constant speed from the occluded areas. Such an assumption can result in a deadlock problem, causing the ego vehicle to remain stopped at an intersection indefinitely due to insufficient visibility. To solve this problem and facilitate safe, deadlock-free intersection crossing, we propose a blind intersection planner that utilizes both the ego vehicle and the approaching vehicle’s visibility. The planner uses a particle filter and our proposed visibility-dependent behavior model of approaching vehicles for predicting hidden vehicles. The behavior model is designed based on an analysis of actual driving data from multiple drivers crossing blind intersections. The proposed planner was tested in a simulation and found to be effective for allowing deadlock-free crossings at intersections where a baseline planner became stuck in a deadlock. The effects of perception accuracy and sensor position on output motion were also investigated. It was found that the proposed planner delayed crossing motion when the perception was imperfect. Furthermore, our results showed that the planner decelerated less while crossing the intersection with the front-mounted sensor configuration compared to the roof-mounted configuration due to the improved visibility. The minimum speed difference between the two sensor configurations was 1.82 m/s at an intersection with relatively poor visibility and 1.50 m/s at an intersection with good visibility.

2018 ◽  
Vol 19 (2) ◽  
pp. 208
Author(s):  
Xudong Zheng ◽  
Fangwei Xie ◽  
Diancheng Wu ◽  
Xinjian Guo ◽  
Bing Zhang ◽  
...  

The purpose of this paper is to study the air effects on transmission characteristics of hydro-viscous clutch and reveal the distribution law of the flow field of the oil film. The computational-fluid-dynamics (CFD) simulation model of oil film with radial oil grooves between friction pairs is taken as the study object. Considering the air effects, the pressure field, two-phase distribution, transmission torque and temperature field of the oil film are analyzed comparatively by using the CFD technology. The results show that the presence of air changes the pressure and temperature distributions of the oil film. With increase of the absolute rotational speed, the air volume fraction increases and the radius value of the air-liquid boundary decreases under condition of constant speed difference, which makes the coverage rate of the oil film on the surface of the friction disks reduce and the transmission torque of the oil film decrease. These simulation results are attributed to the study of hydro-viscous-drive and its applications. This paper also can provide a theoretical basis for the mechanism of power transmission through oil film in the presence of air effects.


2012 ◽  
Vol 6-7 ◽  
pp. 1066-1071 ◽  
Author(s):  
Jin Bao Song ◽  
Jun Yu Li ◽  
Qin Zhang

This paper is based on the particle filter for discrete particle track prediction theory, analyses the motion of animation with the methods of picking key points and predicting motion trace by utilizing particle filter. The behavior model has been built for the already existing animation character. During the research, the thesis realized using existed animation motion trace model to drive a similar figure and create a new animation.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3617 ◽  
Author(s):  
Wei-Chun Hsu ◽  
Tommy Sugiarto ◽  
Jun-Wen Chen ◽  
Yi-Jia Lin

This study aimed to find the correlation between conventional Arch Index (AI) measurements and our prototype of a simplified insole-based plantar pressure measurement system and to find out the effective plantar pressure sensor position. Twenty-one subjects participated in this study, which was divided into two groups: 10 subjects with flatfoot and 11 subjects with normal foot. Five force sensitive resistance sensors were used on this prototype using Arduino as the data acquisition device. Two types of trials, namely static and dynamic, were conducted to validate our system against the ink-type AI measurement as a golden standard. The results showed that in the static trial, there was a high linear correlation with the medial arch sensor configuration, while in the dynamic trial, there was a high linear correlation in the medial arch sensor configuration and sensor 5 configuration. This study showed that both static and dynamic tests using the self-developed device could effectively determine most of the flatfoot subjects and suggests that in the future, it can be applied in clinical applications because of its advantages when compared to the expensive-high tech graphic input board and conventional tools, like ink-type based measurements.


2014 ◽  
Vol 668-669 ◽  
pp. 1021-1024
Author(s):  
Jin Bao Song ◽  
Long Ye ◽  
Qin Zhang

This paper analyses the motion of animation with the methods of picking key points and predicting motion trace based on the particle filter for discrete particle track prediction theory. The behavior model has been built for the already existing animation character. During the research, the thesis realized using existed animation motion trace model to drive a similar figure and create a new animation.


2004 ◽  
Vol 63 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Friedrich Wilkening ◽  
Claudia Martin

Children 6 and 10 years of age and adults were asked how fast a toy car had to be to catch up with another car, the latter moving with a constant speed throughout. The speed change was required either after half of the time (linear condition) or half of the distance (nonlinear condition), and responses were given either on a rating scale (judgment condition) or by actually producing the motion (action condition). In the linear condition, the data patterns for both judgments and actions were in accordance with the normative rule at all ages. This was not true for the nonlinear condition, where children’s and adults’ judgment and also children’s action patterns were linear, and only adults’ action patterns were in line with the nonlinearity principle. Discussing the reasons for the misconceptions and for the action-judgment dissociations, a claim is made for a new view on the development of children’s concepts of time and speed.


Author(s):  
Antara Dasgupta ◽  
Renaud Hostache ◽  
RAAJ Ramasankaran ◽  
Guy J.‐P Schumann ◽  
Stefania Grimaldi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document