scholarly journals Energy Harvesting Strategies for Wireless Sensor Networks and Mobile Devices: A Review

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 661
Author(s):  
Marco Grossi

Wireless sensor network nodes and mobile devices are normally powered by batteries that, when depleted, must be recharged or replaced. This poses important problems, in particular for sensor nodes that are placed in inaccessible areas or biomedical sensors implanted in the human body where the battery replacement is very impractical. Moreover, the depleted battery must be properly disposed of in accordance with national and international regulations to prevent environmental pollution. A very interesting alternative to power mobile devices is energy harvesting where energy sources naturally present in the environment (such as sunlight, thermal gradients and vibrations) are scavenged to provide the power supply for sensor nodes and mobile systems. Since the presence of these energy sources is discontinuous in nature, electronic systems powered by energy harvesting must include a power management system and a storage device to store the scavenged energy. In this paper, the main strategies to design a wireless mobile sensor system powered by energy harvesting are reviewed and different sensor systems powered by such energy sources are presented.

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 219
Author(s):  
Phuoc Duc Nguyen ◽  
Lok-won Kim

People nowadays are entering an era of rapid evolution due to the generation of massive amounts of data. Such information is produced with an enormous contribution from the use of billions of sensing devices equipped with in situ signal processing and communication capabilities which form wireless sensor networks (WSNs). As the number of small devices connected to the Internet is higher than 50 billion, the Internet of Things (IoT) devices focus on sensing accuracy, communication efficiency, and low power consumption because IoT device deployment is mainly for correct information acquisition, remote node accessing, and longer-term operation with lower battery changing requirements. Thus, recently, there have been rich activities for original research in these domains. Various sensors used by processing devices can be heterogeneous or homogeneous. Since the devices are primarily expected to operate independently in an autonomous manner, the abilities of connection, communication, and ambient energy scavenging play significant roles, especially in a large-scale deployment. This paper classifies wireless sensor nodes into two major categories based the types of the sensor array (heterogeneous/homogeneous). It also emphasizes on the utilization of ad hoc networking and energy harvesting mechanisms as a fundamental cornerstone to building a self-governing, sustainable, and perpetually-operated sensor system. We review systems representative of each category and depict trends in system development.


Author(s):  
Aditi Paul ◽  
Indu Pandey

Energy harvesting wireless sensor network (EH-WSN) harvests energy from the environment to supply power to the sensor nodes which apparently enhances their lifetime. However, the unpredictable nature of the resources throws challenges to the sustainability of energy supply for the continuous network operation. This creates a gap between unstable energy harvesting rates & energy requirements of the nodes of the network. The state-of-the-art algorithms proposed so far to address this problem domain are not able to bridge the gap fully to standardize the framework. Hence there is considerable scope of research to create a trade-off between EH techniques and specially designed protocols for in EH-WSN. Current study evaluates the performance and efficiency of some futuristic techniques which incorporate advanced tools and algorithms. The study aims to identify the strength and weaknesses of the proposed techniques which can emerge specific research requirement in this field. Finally, we propose a research direction towards Multi-source Hybrid EH-WSN (MHEHWSN) which is able to maximize energy availability and functional efficiency. The scope of this study is to develop a notion of a framework which eliminates the limitations of very recent techniques of EH-WSN by including multiple energy resources to extract required energy even in presence of unpredictability. However, keeping in mind the ease of use and less complex structure Multi-source hybrid EH technique requires a careful design paradigm.


Sign in / Sign up

Export Citation Format

Share Document