scholarly journals Parameter Extraction of Photovoltaic Module Using Tunicate Swarm Algorithm

Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 878
Author(s):  
Abhishek Sharma ◽  
Ankit Dasgotra ◽  
Sunil Kumar Tiwari ◽  
Abhinav Sharma ◽  
Vibhu Jately ◽  
...  

In the renewable energy sector, the extraction of parameters for solar photovoltaic (PV) cells is a widely studied area of research. Parameter extraction is a non-linear complex optimization problem for solar PV cells. In this research work, the authors have implemented the Tunicate swarm algorithm (TSA) to estimate the optimized value of the unknown parameters of a PV cell/module under standard temperature conditions. The simulation results have been compared with four different, pre-existing optimization algorithms: gravitational search algorithm (GSA), a hybrid of particle swarm optimization and gravitational search algorithm (PSOGSA), sine cosine (SCA), and whale optimization (WOA). The comparison of results broadly demonstrates that the TSA algorithm outperforms the existing optimization algorithms in terms of root mean square error (RMSE) and convergence rate. Furthermore, the statistical results confirm that the TSA algorithm is a better algorithm in terms of average robustness and precision. The Friedman ranking test is also carried out to demonstrate the competency and reliability of the implemented approach.

Author(s):  
Abhishek Sharma ◽  
Abhinav Sharma ◽  
Averbukh Moshe ◽  
Nikhil Raj ◽  
Rupendra Kumar Pachauri

In the field of renewable energy, the extraction of parameters for solar photovoltaic (PV) cells is a widely studied area of research. Parameter extraction of solar PV cell is a highly non-linear complex optimization problem. In this research work, the authors have explored grey wolf optimization (GWO) algorithm to estimate the optimized value of the unknown parameters of a PV cell. The simulation results have been compared with five different pre-existing optimization algorithms: gravitational search algorithm (GSA), a hybrid of particle swarm optimization and gravitational search algorithm (PSOGSA), sine cosine (SCA), chicken swarm optimization (CSO) and cultural algorithm (CA). Furthermore, a comparison with the algorithms existing in the literature is also carried out. The comparative results comprehensively demonstrate that GWO outperforms the existing optimization algorithms in terms of root mean square error (RMSE) and the rate of convergence. Furthermore, the statistical results validate and indicate that GWO algorithm is better than other algorithms in terms of average accuracy and robustness. An extensive comparison of electrical performance parameters: maximum current, voltage, power, and fill factor (FF) has been carried out for both PV model.


Author(s):  
Umit Can ◽  
Bilal Alatas

The classical optimization algorithms are not efficient in solving complex search and optimization problems. Thus, some heuristic optimization algorithms have been proposed. In this paper, exploration of association rules within numerical databases with Gravitational Search Algorithm (GSA) has been firstly performed. GSA has been designed as search method for quantitative association rules from the databases which can be regarded as search space. Furthermore, determining the minimum values of confidence and support for every database which is a hard job has been eliminated by GSA. Apart from this, the fitness function used for GSA is very flexible. According to the interested problem, some parameters can be removed from or added to the fitness function. The range values of the attributes have been automatically adjusted during the time of mining of the rules. That is why there is not any requirements for the pre-processing of the data. Attributes interaction problem has also been eliminated with the designed GSA. GSA has been tested with four real databases and promising results have been obtained. GSA seems an effective search method for complex numerical sequential patterns mining, numerical classification rules mining, and clustering rules mining tasks of data mining.


2021 ◽  
Vol 11 (10) ◽  
pp. 4382
Author(s):  
Ali Sadeghi ◽  
Sajjad Amiri Doumari ◽  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Pavel Trojovský ◽  
...  

Optimization is the science that presents a solution among the available solutions considering an optimization problem’s limitations. Optimization algorithms have been introduced as efficient tools for solving optimization problems. These algorithms are designed based on various natural phenomena, behavior, the lifestyle of living beings, physical laws, rules of games, etc. In this paper, a new optimization algorithm called the good and bad groups-based optimizer (GBGBO) is introduced to solve various optimization problems. In GBGBO, population members update under the influence of two groups named the good group and the bad group. The good group consists of a certain number of the population members with better fitness function than other members and the bad group consists of a number of the population members with worse fitness function than other members of the population. GBGBO is mathematically modeled and its performance in solving optimization problems was tested on a set of twenty-three different objective functions. In addition, for further analysis, the results obtained from the proposed algorithm were compared with eight optimization algorithms: genetic algorithm (GA), particle swarm optimization (PSO), gravitational search algorithm (GSA), teaching–learning-based optimization (TLBO), gray wolf optimizer (GWO), and the whale optimization algorithm (WOA), tunicate swarm algorithm (TSA), and marine predators algorithm (MPA). The results show that the proposed GBGBO algorithm has a good ability to solve various optimization problems and is more competitive than other similar algorithms.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1190
Author(s):  
Mohammad Dehghani ◽  
Zeinab Montazeri ◽  
Štěpán Hubálovský

There are many optimization problems in the different disciplines of science that must be solved using the appropriate method. Population-based optimization algorithms are one of the most efficient ways to solve various optimization problems. Population-based optimization algorithms are able to provide appropriate solutions to optimization problems based on a random search of the problem-solving space without the need for gradient and derivative information. In this paper, a new optimization algorithm called the Group Mean-Based Optimizer (GMBO) is presented; it can be applied to solve optimization problems in various fields of science. The main idea in designing the GMBO is to use more effectively the information of different members of the algorithm population based on two selected groups, with the titles of the good group and the bad group. Two new composite members are obtained by averaging each of these groups, which are used to update the population members. The various stages of the GMBO are described and mathematically modeled with the aim of being used to solve optimization problems. The performance of the GMBO in providing a suitable quasi-optimal solution on a set of 23 standard objective functions of different types of unimodal, high-dimensional multimodal, and fixed-dimensional multimodal is evaluated. In addition, the optimization results obtained from the proposed GMBO were compared with eight other widely used optimization algorithms, including the Marine Predators Algorithm (MPA), the Tunicate Swarm Algorithm (TSA), the Whale Optimization Algorithm (WOA), the Grey Wolf Optimizer (GWO), Teaching–Learning-Based Optimization (TLBO), the Gravitational Search Algorithm (GSA), Particle Swarm Optimization (PSO), and the Genetic Algorithm (GA). The optimization results indicated the acceptable performance of the proposed GMBO, and, based on the analysis and comparison of the results, it was determined that the GMBO is superior and much more competitive than the other eight algorithms.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
R. Sarjila ◽  
K. Ravi ◽  
J. Belwin Edward ◽  
K. Sathish Kumar ◽  
Avagaddi Prasad

Parameter extraction of a solar photovoltaic system is a nonlinear problem. Many optimization algorithms are implemented for this purpose, which failed in giving better results at low irradiance levels. This article presents a novel method for parameter extraction using gravitational search algorithm. The proposed method evaluates the parameters of different PV panels at various irradiance levels. A critical evaluation and comparison of gravitational search algorithm with other optimization techniques such as genetic algorithm are given. Extensive simulation analyses are carried out on the proposed method and show that GSA is much suitable for parameter extraction problem.


Author(s):  
Ying-Ying Koay ◽  
Jian-Ding Tan ◽  
Chin-Wai Lim ◽  
Siaw-Paw Koh ◽  
Sieh-Kiong Tiong ◽  
...  

<span>Optimization algorithm has become one of the most studied branches in the fields of artificial intelligent and soft computing. Many powerful optimization algorithms with global search ability can be found in the literature. Gravitational Search Algorithm (GSA) is one of the relatively new population-based optimization algorithms. In this research, an Adaptive Gravitational Search Algorithm (AGSA) is proposed. The AGSA is enhanced with an adaptive search step local search mechanism. The adaptive search step begins the search with relatively larger step size, and automatically fine-tunes the step size as iterations go. This enhancement grants the algorithm a more powerful exploitation ability, which in turn grants solutions with higher accuracies. The proposed AGSA was tested in a test suit with several well-established optimization test functions. The results showed that the proposed AGSA out-performed other algorithms such as conventional GSA and Genetic Algorithm in the benchmarking of speed and accuracy. It can thus be concluded that the proposed AGSA performs well in solving local and global optimization problems. Applications of the AGSA to solve practical engineering optimization problems can be considered in the future.</span>


Author(s):  
Yogesh Kumar ◽  
Shashi Kant Verma ◽  
Sandeep Sharma

The optimization of the features is vital to effectively detecting facial expressions. This research work has optimized the facial features by employing the improved quantum-inspired gravitation search algorithm (IQI-GSA). The improvement to the quantum-inspired gravitational search algorithm (QIGSA) is conducted to handle the local optima trapping. The QIGSA is the amalgamation of the quantum computing and gravitational search algorithm that owns the overall strong global search ability to handle the optimization problems in comparison with the gravitational search algorithm. In spite of global searching ability, the QIGSA can be trapped in local optima in the later iterations. This work has adapted the IQI-GSA approach to handle the local optima, stochastic characteristics and maintaining balance among the exploration and exploitation. The IQI-GSA is utilized for the optimized features selection from the set of extracted features using the LGBP (a hybrid approach of local binary patterns with the Gabor filter) method. The system performance is analyzed for the application of automated facial expressions recognition with the classification technique of deep convolutional neural network (DCNN). The extensive experimentation evaluation is conducted on the benchmark datasets of Japanese Female Facial Expression (JAFFE), Radboud Faces Database (RaFD) and Karolinska Directed Emotional Faces (KDEF). To determine the effectiveness of the proposed facial expression recognition system, the results are also evaluated for the feature optimization with GSA and QIGSA. The evaluation results clearly demonstrate the outperformed performance of the considered system with IQI-GSA in comparison with GSA, QIGSA and existing techniques available for the experimentation on utilized datasets.


Sign in / Sign up

Export Citation Format

Share Document