scholarly journals Applying FPGA Control with ADC-Free Sampling to Multi-Output Forward Converter

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1010
Author(s):  
Yeu-Torng Yau ◽  
Kuo-Ing Hwu ◽  
Jenn-Jong Shieh

In this paper, a forward converter with multiple outputs is employed to build up a circuit system with full-digital control without any analog-to-digital (ADC) converter adopted. In this circuit, all the output voltages can be regulated by individual feedback control loops. As transient load variations due to the main output happens, the secondary outputs are affected quite slightly. Furthermore, the output voltage with the largest output current adopts not only the voltage mode control but also the interleaved control and current sharing control. Therefore, if this circuit system adopts full-digital control, the number of ADCs employed is relatively large, and the corresponding cost is expensive. Accordingly, the sampling of multiple output voltages and two-phase currents without any ADCs is used herein. Moreover, a nonlinear control strategy is proposed and applied to the traditional proportional-integral-derivative (PID) controller to accelerate the load transient response. In addition, the field programmable gate array (FPGA) is used as a control kernel.

2020 ◽  
Vol 16 (12) ◽  
pp. 7413-7425 ◽  
Author(s):  
Jianguo Zhou ◽  
Yinliang Xu ◽  
Hongbin Sun ◽  
Liming Wang ◽  
Mo-Yuen Chow

Author(s):  
Hampus Malmberg ◽  
Georg Wilckens ◽  
Hans-Andrea Loeliger

AbstractA control-bounded analog-to-digital converter consists of a linear analog system that is subject to digital control, and a digital filter that estimates the analog input signal from the digital control signals. Such converters have many commonalities with delta–sigma converters, but they can use more general analog filters. The paper describes the operating principle, gives a transfer function analysis, and describes the digital filtering. In addition, the paper discusses two examples of such architectures. The first example is a cascade structure reminiscent of, but simpler than, a high-order MASH converter. The second example combines two attractive properties that have so far been considered incompatible. Its nominal conversion noise (assuming ideal components) essentially equals that of the first example. However, its analog filter is a fully connected network to which the input signal is fed in parallel, which potentially makes it more robust against nonidealities.


2014 ◽  
pp. 27-33
Author(s):  
Mounir Bouhedda ◽  
Mokhtar Attari

The aim of this paper is to introduce a new architecture using Artificial Neural Networks (ANN) in designing a 6-bit nonlinear Analog to Digital Converter (ADC). A study was conducted to synthesise an optimal ANN in view to FPGA (Field Programmable Gate Array) implementation using Very High-speed Integrated Circuit Hardware Description Language (VHDL). Simulation and tests results are carried out to show the efficiency of the designed ANN.


10.29007/c4zl ◽  
2019 ◽  
Author(s):  
Maximilian Gaukler ◽  
Peter Ulbrich

Benchmark Proposal: The implementation of digital control systems in complex multi- core or distributed real-time systems results in non-deterministic input/output timing. Such timing deviations typically lead to degraded performance or even instability, which in turn may jeopardize safety goals. We present the problem of proving worst-case guarantees for given input/output timing bounds as a benchmark for the verification of hybrid dynamical systems.


2011 ◽  
Vol 57 (1) ◽  
pp. 77-83 ◽  
Author(s):  
Konrad Skup ◽  
Paweł Grudziński ◽  
Piotr Orleański

Application of Digital Control Techniques for Satellite Medium Power DC-DC Converters The objective of this paper is to present a work concerning a digital control loop system for satellite medium power DC-DC converters that is done in Space Research Centre. The whole control process of a described power converter is based on a high speed digital signal processing. The paper presents a development of a FPGA digital controller for voltage and current mode stabilization that was implemented using VHDL. The described controllers are based on a classical digital PID controller. The converter used for testing is a 200 kHz, 750W buck converter with 50V/15A output. A high resolution digital PWM approach is presented. Additionally a simple and effective solution of filtering of an analog-to-digital converter output is presented.


2021 ◽  
Author(s):  
Shengwei Gao ◽  
Hao Wang ◽  
Yifeng Wang ◽  
Zhongjie Wang ◽  
Bo Chen

Sign in / Sign up

Export Citation Format

Share Document