scholarly journals IoT and Cloud Computing in Health-Care: A New Wearable Device and Cloud-Based Deep Learning Algorithm for Monitoring of Diabetes

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2719
Author(s):  
Ahmed R. Nasser ◽  
Ahmed M. Hasan ◽  
Amjad J. Humaidi ◽  
Ahmed Alkhayyat ◽  
Laith Alzubaidi ◽  
...  

Diabetes is a chronic disease that can affect human health negatively when the glucose levels in the blood are elevated over the creatin range called hyperglycemia. The current devices for continuous glucose monitoring (CGM) supervise the glucose level in the blood and alert user to the type-1 Diabetes class once a certain critical level is surpassed. This can lead the body of the patient to work at critical levels until the medicine is taken in order to reduce the glucose level, consequently increasing the risk of causing considerable health damages in case of the intake is delayed. To overcome the latter, a new approach based on cutting-edge software and hardware technologies is proposed in this paper. Specifically, an artificial intelligence deep learning (DL) model is proposed to predict glucose levels in 30 min horizons. Moreover, Cloud computing and IoT technologies are considered to implement the prediction model and combine it with the existing wearable CGM model to provide the patients with the prediction of future glucose levels. Among the many DL methods in the state-of-the-art (SoTA) have been considered a cascaded RNN-RBM DL model based on both recurrent neural networks (RNNs) and restricted Boltzmann machines (RBM) due to their superior properties regarding improved prediction accuracy. From the conducted experimental results, it has been shown that the proposed Cloud&DL-based wearable approach achieves an average accuracy value of 15.589 in terms of RMSE, then outperforms similar existing blood glucose prediction methods in the SoTA.

2021 ◽  
Vol 13 (9) ◽  
pp. 1779
Author(s):  
Xiaoyan Yin ◽  
Zhiqun Hu ◽  
Jiafeng Zheng ◽  
Boyong Li ◽  
Yuanyuan Zuo

Radar beam blockage is an important error source that affects the quality of weather radar data. An echo-filling network (EFnet) is proposed based on a deep learning algorithm to correct the echo intensity under the occlusion area in the Nanjing S-band new-generation weather radar (CINRAD/SA). The training dataset is constructed by the labels, which are the echo intensity at the 0.5° elevation in the unblocked area, and by the input features, which are the intensity in the cube including multiple elevations and gates corresponding to the location of bottom labels. Two loss functions are applied to compile the network: one is the common mean square error (MSE), and the other is a self-defined loss function that increases the weight of strong echoes. Considering that the radar beam broadens with distance and height, the 0.5° elevation scan is divided into six range bands every 25 km to train different models. The models are evaluated by three indicators: explained variance (EVar), mean absolute error (MAE), and correlation coefficient (CC). Two cases are demonstrated to compare the effect of the echo-filling model by different loss functions. The results suggest that EFnet can effectively correct the echo reflectivity and improve the data quality in the occlusion area, and there are better results for strong echoes when the self-defined loss function is used.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1127
Author(s):  
Ji Hyung Nam ◽  
Dong Jun Oh ◽  
Sumin Lee ◽  
Hyun Joo Song ◽  
Yun Jeong Lim

Capsule endoscopy (CE) quality control requires an objective scoring system to evaluate the preparation of the small bowel (SB). We propose a deep learning algorithm to calculate SB cleansing scores and verify the algorithm’s performance. A 5-point scoring system based on clarity of mucosal visualization was used to develop the deep learning algorithm (400,000 frames; 280,000 for training and 120,000 for testing). External validation was performed using additional CE cases (n = 50), and average cleansing scores (1.0 to 5.0) calculated using the algorithm were compared to clinical grades (A to C) assigned by clinicians. Test results obtained using 120,000 frames exhibited 93% accuracy. The separate CE case exhibited substantial agreement between the deep learning algorithm scores and clinicians’ assessments (Cohen’s kappa: 0.672). In the external validation, the cleansing score decreased with worsening clinical grade (scores of 3.9, 3.2, and 2.5 for grades A, B, and C, respectively, p < 0.001). Receiver operating characteristic curve analysis revealed that a cleansing score cut-off of 2.95 indicated clinically adequate preparation. This algorithm provides an objective and automated cleansing score for evaluating SB preparation for CE. The results of this study will serve as clinical evidence supporting the practical use of deep learning algorithms for evaluating SB preparation quality.


Sign in / Sign up

Export Citation Format

Share Document